Controlled Synthesis of Large Single Crystals of Metal-Organic Framework CPO-27-Ni Prepared by a Modulation Approach: In situ Single-Crystal X-ray Diffraction Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EP/N509759/1
Engineering and Physical Sciences Research Council
EP/L016419
Engineering and Physical Sciences Research Council
EP/K005499/1
Engineering and Physical Sciences Research Council
EP/L017008/1
Engineering and Physical Sciences Research Council
CZ.02.1.01/0.0/0.0/15_003/ 0000417
OP VVV 'Excellent Research Teams'
787073
European Research Council - International
PubMed
33783895
PubMed Central
PMC8251849
DOI
10.1002/chem.202100528
Knihovny.cz E-zdroje
- Klíčová slova
- CPO-27-M, MOF-74, gas adsorption, metal-organic frameworks, modulation synthesis, single crystals,
- Publikační typ
- časopisecké články MeSH
The size of single crystals of the metal-organic framework CPO-27-Ni was incrementally increased through a series of modulated syntheses. A novel linker modulated synthesis using 2,5-dihydroxyterephthalic acid and the isomeric ligand 4,6-dihydroxyisophthalic acid yielded large single crystals of CPO-27-Ni (∼70 μm). All materials were shown to have high crystallinity and phase purity through powder X-ray diffraction, electron microscopy methods, thermogravimetry, and compositional analysis. For the first time single-crystal structure analyses were carried out on CPO-27-Ni. High BET surface areas and nitric oxide (NO) release efficiencies were recorded for all materials. Large single crystals of CPO-27-Ni showed a prolonged NO release and proved suitable for in situ single-crystal diffraction experiments to follow the NO adsorption. An efficient activation protocol was developed, leading to a dehydrated structure after just 4 h, which subsequently was NO-loaded, leading to a first NO loaded single-crystal structural model of CPO-27-Ni.
Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0DE United Kingdom
University of St Andrews North Haugh KY16 9ST St Andrews United Kingdom
Zobrazit více v PubMed
Wang T. C., Bury W., Gómez-Gualdrón D. A., Vermeulen N. A., Mondloch J. E., Deria P., Zhang K., Moghadam P. Z., Sarjeant A. A., Snurr R. Q., Stoddart J. F., Hupp J. T., Farha O. K., J. Am. Chem. Soc. 2015, 137, 3585–3591. PubMed
Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E., Yazaydin A. O., Snurr R. Q., O'Keeffe M., Kim J., Yaghi O. M., Science 2010, 329, 424–428. PubMed
Zhao Y., Song Z., Li X., Sun Q., Cheng N., Lawes S., Sun X., Energy Storage Mater. 2016, 2, 35–62.
Desai A. V., Pimenta V., King C., Cordes D. B., Slawin A. M. Z., Morris R. E., Armstrong A. R., RSC Adv. 2020, 10, 13732–13736. PubMed PMC
Wang L., Han Y., Feng X., Zhou J., Qi P., Wang B., Coord. Chem. Rev. 2016, 307, 361–381.
Valvekens P., Vandichel M., Waroquier M., Van Speybroeck V., De Vos D., J. Catal. 2014, 317, 1–10.
Huang Y.-B., Liang J., Wang X.-S., Cao R., Chem. Soc. Rev. 2017, 46, 126–157. PubMed
Kassie A. A., Duan P., McClure E. T., Schmidt-Rohr K., Woodward P. M., Wade C. R., Inorg. Chem. 2019, 58, 3227–3236. PubMed
Palomba J. M., Credille C. V., Kalaj M., DeCoste J. B., Peterson G. W., Tovar T. M., Cohen S. M., Chem. Commun. 2018, 54, 5768–5771. PubMed
Zhou D.-D., Chen P., Wang C., Wang S.-S., Du Y., Yan H., Ye Z.-M., He C.-T., Huang R.-K., Mo Z.-W., Huang N.-Y., Zhang J.-P., Nat. Mater. 2019, 18, 994–998. PubMed
Schneemann A., Bon V., Schwedler I., Senkovska I., Kaskel S., Fischer R. A., Chem. Soc. Rev. 2014, 43, 6062–6096. PubMed
Gücüyener C., van den Bergh J., Gascon J., Kapteijn F., J. Am. Chem. Soc. 2010, 132, 17704–17706. PubMed
Rege S. U., Yang R. T., Chem. Eng. Sci. 2002, 57, 1139–1149.
Adil K., Belmabkhout Y., Pillai R. S., Cadiau A., Bhatt P. M., Assen A. H., Maurin G., Eddaoudi M., Chem. Soc. Rev. 2017, 46, 3402–3430. PubMed
Czaja A. U., Trukhan N., Müller U., Chem. Soc. Rev. 2009, 38, 1284–1293. PubMed
McKinlay A. C., Xiao B., Wragg D. S., Wheatley P. S., Megson I. L., Morris R. E., J. Am. Chem. Soc. 2008, 130, 10440–10444. PubMed
Li H., Wang K., Sun Y., Lollar C. T., Li J., Zhou H.-C., Mater. Today 2018, 21, 108–121.
Furukawa H., Cordova K. E., O'Keeffe M., Yaghi O. M., Science 2013, 341, 1230444–1230455. PubMed
Bachman J. E., Kapelewski M. T., Reed D. A., Gonzalez M. I., Long J. R., J. Am. Chem. Soc. 2017, 139, 15363–15370. PubMed
McKinlay A. C., Morris R. E., Horcajada P., Férey G., Gref R., Couvreur P., Serre C., Angew. Chem. Int. Ed. 2010, 49, 6260–6266; PubMed
Angew. Chem. 2010, 122, 6400–6406.
Hibbard H. A. J., Reynolds M. M., J. Mater. Chem. B 2019, 7, 2009–2018. PubMed
Pinto R. V., Wang S., Tavares S. R., Pires J., Antunes F., Vimont A., Clet G., Daturi M., Maurin G., Serre C., Pinto M. L., Angew. Chem. Int. Ed. 2020, 59, 5135–5143; PubMed
Angew. Chem. 2020, 132, 5173–5181.
Duncan M. J., Wheatley P. S., Coghill E. M., Vornholt S. M., Warrender S. J., Megson I. L., Morris R. E., Mater. Adv. 2020, 1, 2509–2519.
Vornholt S. M., Duncan M. J., Warrender S. J., Semino R., Ramsahye N. A., Maurin G., Smith M. W., Tan J., Miller D. N., Morris R. E., ACS Appl. Mater. Interfaces 2020, 12, 58263–58276. PubMed
Rosi N. L., Kim J., Eddaoudi M., Chen B., O'Keeffe M., Yaghi O. M., J. Am. Chem. Soc. 2005, 127, 1504–1518. PubMed
Senkovska I., Cychosz K. A., Llewellyn P., Thommes M., Kaskel S., in The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications (Ed.: Kaskel S.), Wiley-VCH, Weinheim, Germany, 2016, pp. 575–605.
Rieth A. J., Dincă M., J. Am. Chem. Soc. 2018, 140, 3461–3466. PubMed
Kalaj M., Bentz K. C., Ayala S., Palomba J. M., Barcus K. S., Katayama Y., Cohen S. M., Chem. Rev. 2020, 120, 8267–8302. PubMed
Forgan R. S., Chem. Sci. 2020, 11, 4546–4562. PubMed PMC
Marshall C. R., Staudhammer S. A., Brozek C. K., Chem. Sci. 2019, 10, 9396–9408. PubMed PMC
Howarth A. J., Peters A. W., Vermeulen N. A., Wang T. C., Hupp J. T., Farha O. K., Chem. Mater. 2017, 29, 26–39.
Shearer G. C., Chavan S., Bordiga S., Svelle S., Olsbye U., Lillerud K. P., Chem. Mater. 2016, 28, 3749–3761.
Abánades Lázaro I., Wells C. J. R., Forgan R. S., Angew. Chem. Int. Ed. 2020, 59, 5211–5217; PubMed PMC
Angew. Chem. 2020, 132, 5249–5255.
Marshall R. J., Griffin S. L., Wilson C., Forgan R. S., Chem. Eur. J. 2016, 22, 4870–4877. PubMed PMC
Kapelewski M. T., Geier S. J., Hudson M. R., Stück D., Mason J. A., Nelson J. N., Xiao D. J., Hulvey Z., Gilmour E., FitzGerald S. A., Head-Gordon M., Brown C. M., Long J. R., J. Am. Chem. Soc. 2014, 136, 12119–12129. PubMed
Dietzel P. D. C., Panella B., Hirscher M., Blom R., Fjellvåg H., Chem. Commun. 2006, 959. PubMed
Henkelis S. E., Vornholt S. M., Cordes D. B., Slawin A. M. Z. Z., Wheatley P. S., Morris R. E., CrystEngComm 2019, 21, 1857–1861.
Kuperman A., Nadimi S., Oliver S., Ozin G. A., Garcés J. M., Olken M. M., Nature 1993, 365, 239–242.
Matito-Martos I., Rahbari A., Martin-Calvo A., Dubbeldam D., Vlugt T. J. H., Calero S., Phys. Chem. Chem. Phys. 2018, 20, 4189–4199. PubMed
Zhu H., Ka B., Murad F., World J. Surg. 2007, 31, 624–631. PubMed
Butler A. R., Williams D. L. H., Chem. Soc. Rev. 1993, 22, 233.
Cattaneo D., Warrender S. J., Duncan M. J., Kelsall C. J., Doherty M. K., Whitfield P. D., Megson I. L., Morris R. E., RSC Adv. 2016, 6, 14059–14067. PubMed PMC
McKinlay A. C., Xiao B., Wragg D. S., Wheatley P. S., Megson I. L., Morris R. E., J. Am. Chem. Soc. 2008, 130, 10440–10444. PubMed
Bonino F., Chavan S., Vitillo J. G., Groppo E., Agostini G., Lamberti C., Dietzel P. D. C., Prestipino C., Bordiga S., Chem. Mater. 2008, 20, 4957–4968.
Dietzel P. D. C., Johnsen R. E., Blom R., Fjellvåg H., Chem. Eur. J. 2008, 14, 2389–2397. PubMed
Gonzalez M. I., Mason J. A., Bloch E. D., Teat S. J., Gagnon K. J., Morrison G. Y., Queen W. L., Long J. R., Chem. Sci. 2017, 8, 4387–4398. PubMed PMC
Dietzel P. D. C., Morita Y., Blom R., Fjellvåg H., Angew. Chem. Int. Ed. 2005, 44, 6354–6358; PubMed
Angew. Chem. 2005, 117, 6512–6516. PubMed
Guasch J., Dietzel P. D. C., Collier P., Acerbi N., Microporous Mesoporous Mater. 2015, 203, 238–244.
Vornholt S. M., Henkelis S. E., Morris R. E., Dalton Trans. 2017, 46, 8298–8303. PubMed
Qiu S., Yu J., Zhu G., Terasaki O., Nozue Y., Pang W., Xu R., Microporous Mesoporous Mater. 1998, 21, 245–251.
Kolbe H., Justus Liebigs Ann. Chem. 1860, 113, 125–127.
Schmitt R., J. Prakt. Chem. 1885, 31, 397–411.
Qin J.-S., Yuan S., Wang Q., Alsalme A., Zhou H.-C., J. Mater. Chem. A 2017, 5, 4280–4291.
Dhakshinamoorthy A., Asiri A. M., Garcia H., Catal. Sci. Technol. 2016, 6, 5238–5261.
Newman J. A., Schmitt P. D., Toth S. J., Deng F., Zhang S., Simpson G. J., Anal. Chem. 2015, 87, 10950–10955. PubMed PMC
Rosnes M. H., Pato-Doldán B., Johnsen R. E., Mundstock A., Caro J., Dietzel P. D. C., Microporous Mesoporous Mater. 2020, 309, 110503.
Henkelis S. E., McCormick L. J., Cordes D. B., Slawin A. M. Z., Morris R. E., Inorg. Chem. Commun. 2016, 65, 21–23.
Ghermani N. E., Morgant G., d'Angelo J., Desmaële D., Fraisse B., Bonhomme F., Dichi E., Sgahier M., Polyhedron 2007, 26, 2880–2884.
Cortés J., Adv. Colloid Interface Sci. 1985, 22, 151–176.
Bloch E. D., Queen W. L., Chavan S., Wheatley P. S., Zadrozny J. M., Morris R., Brown C. M., Lamberti C., Bordiga S., Long J. R., J. Am. Chem. Soc. 2015, 137, 3466–3469. PubMed
Cruz W. V., Leung P. C. W., Seff K., Inorg. Chem. 1979, 18, 1692–1696.
Manoharan P. T., Hamilton W. C., Inorg. Chem. 1963, 2, 1043–1047.