In Situ Single-Crystal X-ray Diffraction Studies of an Anomalous Nitric Oxide Adsorption in a Partially Activated Metal-Organic Framework
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40810418
PubMed Central
PMC12395409
DOI
10.1021/jacs.5c10395
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Metal-organic frameworks (MOFs), with their high porosities and surface areas, show great utility in the field of gas adsorption. To unlock this porosity, MOFs are generally fully activated by removing all adsorbed guests using high temperatures and low pressures. However, this is energy intensive and can be unfeasible if the MOF is part of a composite, where the maximum temperature of the composite is below the activation temperature. To investigate the effect of activation temperature on adsorption, a series of in situ single-crystal X-ray diffraction (scXRD) studies were performed on Ni-MOF-74 loaded with the gas nitric oxide (NO) under different conditions. These experiments uncovered anomalous adsorption results where partially activated samples adsorb ∼14% more NO per framework material than did the fully activated sample. The scXRD experiments revealed a new NO binding site that is only present if the open metal sites are partially occupied by water molecules. To shed more light on the respective binding of the two different NO sites in Ni-MOF-74, these were studied in situ under different treatment conditions, such as the exposure to vacuum at different temperatures. This study yields insights into the nature of binding sites in MOFs, how these are affected by activation, and helps to pave the way for the improved design of processing conditions.
Diamond Light Source Ltd Diamond House Harwell Science and Innovation Campus Didcot OX11 0DE U K
EaStCHEM School of Chemistry Purdie Building North Haugh St Andrews KY16 9ST U K
National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Ettlinger R., Peña Q., Wuttke S.. Nano-to-Macroscale Reticular Materials to Address Societal Challenges. Adv. Funct. Mater. 2024;34:2401844. doi: 10.1002/adfm.202401844. PubMed DOI PMC
Howarth A. J., Peters A. W., Vermeulen N. A., Wang T. C., Hupp J. T., Farha O. K.. Best Practices for the Synthesis, Activation, and Characterization of Metal–organic Frameworks. Chem. Mater. 2017;29:26–39. doi: 10.1021/acs.chemmater.6b02626. DOI
Tsivadze A. Y., Aksyutin O. E., Ishkov A. G., Knyazeva M. K., Solovtsova O. V., Men’shchikov I. E., Fomkin A. A., Shkolin A. V., Khozina E. V., Grachev V. A.. Metal-Organic Framework Structures: Adsorbents for Natural Gas Storage. Russ. Chem. Rev. 2019;88(9):925–978. doi: 10.1070/RCR4873. DOI
Ding M., Flaig R. W., Jiang H. L., Yaghi O. M.. Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev. 2019;48:2783–2828. doi: 10.1039/C8CS00829A. PubMed DOI
Sameni M., Moradbeigi P., Hosseini S., Ghaderian S. M. H., Jajarmi V., Miladipour A. H., Basati H., Abbasi M., Salehi M.. ZIF-8 Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-Mediated Gene Transfer. Biol. Proced. Online. 2024;26(1):4. doi: 10.1186/s12575-024-00229-2. PubMed DOI PMC
Liu Y., Howarth A. J., Vermeulen N. A., Moon S. Y., Hupp J. T., Farha O. K.. Catalytic Degradation of Chemical Warfare Agents and Their Simulants by Metal-Organic Frameworks. Coord. Chem. Rev. 2017;346:101–111. doi: 10.1016/j.ccr.2016.11.008. DOI
McKinlay A. C., Morris R. E., Horcajada P., Férey G., Gref R., Couvreur P., Serre C.. BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications. Angew. Chem., Int. Ed. 2010;49:6260–6266. doi: 10.1002/anie.201000048. PubMed DOI
de Gouw J. A., Parrish D. D., Frost G. J., Trainer M.. Reduced Emissions of CO2, NOx, and SO2 from U.S. Power Plants Owing to Switch from Coal to Natural Gas with Combined Cycle Technology. Earth’s Future. 2014;2(2):75–82. doi: 10.1002/2013EF000196. DOI
Wheatley P. S., Butler A. R., Crane M. S., Fox S., Xiao B., Rossi A. G., Megson I. L., Morris R. E.. NO-Releasing Zeolites and Their Antithrombotic Properties. J. Am. Chem. Soc. 2006;128(2):502–509. doi: 10.1021/ja0503579. PubMed DOI
Pinto R. V., Carvalho S., Antunes F., Pires J., Pinto M. L.. Emerging Nitric Oxide and Hydrogen Sulfide Releasing Carriers for Skin Wound Healing Therapy. ChemMedChem. 2022;17:e202100429. doi: 10.1002/cmdc.202100429. PubMed DOI
Moncada S., Palmer R. M., Higgs E. A.. Nitric Oxide: Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 1991;43(2):109. doi: 10.1016/S0031-6997(25)06663-3. PubMed DOI
Zhang X., Chen Z., Liu X., Hanna S. L., Wang X., Taheri-Ledari R., Maleki A., Li P., Farha O. K.. A Historical Overview of the Activation and Porosity of Metal-Organic Frameworks. Chem. Soc. Rev. 2020;49:7406–7427. doi: 10.1039/D0CS00997K. PubMed DOI
Lin H., Yang Y., Hsu Y. C., Zhang J., Welton C., Afolabi I., Loo M., Zhou H. C.. Metal–Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. Adv. Mater. 2024;36:2209073. doi: 10.1002/adma.202209073. PubMed DOI
Kumar P., Anand B., Tsang Y. F., Kim K. H., Khullar S., Wang B.. Regeneration, Degradation, and Toxicity Effect of MOFs: Opportunities and Challenges. Environ. Res. 2019;176:108488. doi: 10.1016/j.envres.2019.05.019. PubMed DOI
Pinto R. V., Cao C. C., Lyu P., Dovgaliuk I., Shepard W., Rivière E., Su C. Y., Maurin G., Antunes F., Pires J., André V., Henriques C., Tissot A., Pinto M. L., Serre C.. Ultra-Microporous Fe-MOF with Prolonged NO Delivery in Biological Media for Therapeutic Application. Small. 2024;20:2405649. doi: 10.1002/smll.202405649. PubMed DOI PMC
Ettlinger R., Vornholt S. M., Roach M. C., Tuttle R. R., Thai J., Kothari M., Boese M., Holwell A., Duncan M. J., Reynolds M., Morris R. E.. Mixed Metal-Organic Framework Mixed-Matrix Membranes: Insights into Simultaneous Moisture-Triggered and Catalytic Delivery of Nitric Oxide Using Cryo-Scanning Electron Microscopy. ACS Appl. Mater. Interfaces. 2023;15(42):49835–49842. doi: 10.1021/acsami.3c11283. PubMed DOI PMC
Vornholt S. M., Duncan M. J., Warrender S. J., Semino R., Ramsahye N. A., Maurin G., Smith M. W., Tan J. C., Miller D. N., Morris R. E.. Multifaceted Study of the Interactions between CPO-27-Ni and Polyurethane and Their Impact on Nitric Oxide Release Performance. ACS Appl. Mater. Interfaces. 2020;12(52):58263–58276. doi: 10.1021/acsami.0c17937. PubMed DOI
Kitao T., Zhang Y., Kitagawa S., Wang B., Uemura T.. Hybridization of MOFs and Polymers. Chem. Soc. Rev. 2017;46:3108–3133. doi: 10.1039/C7CS00041C. PubMed DOI
Zander Z. K., Wang F., Becker M. L., Weiss R. A.. Ionomers for Tunable Softening of Thermoplastic Polyurethane. Macromolecules. 2016;49(3):926–934. doi: 10.1021/acs.macromol.6b00005. DOI
Guillén-Espinoza M., Sancho F. V., Starbird-Perez R., Zamora-Sequeira R.. PEBAX 5533D Formulation for Enhancement of Mechanical and Thermal Properties of Material Used in Medical Device Manufacturing. J. Compos. Sci. 2024;8(8):314. doi: 10.3390/jcs8080314. DOI
Carrington E. J., Vitórica-Yrezábal I. J., Brammer L.. Crystallographic Studies of Gas Sorption in Metal-Organic Frameworks. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2014;70(3):404–422. doi: 10.1107/S2052520614009834. PubMed DOI PMC
Vornholt, S. M. Novel Metal-Organic Frameworks and Polymer Formulations for Biomedical Applications; University of St Andrews, 2021.
Main R. M., Vornholt S. M., Rice C. M., Elliott C., Russell S. E., Kerr P. J., Warren M. R., Morris R. E.. In Situ Single-Crystal Synchrotron X-Ray Diffraction Studies of Biologically Active Gases in Metal-Organic Frameworks. Commun. Chem. 2023;6(1):44. doi: 10.1038/s42004-023-00845-1. PubMed DOI PMC
Main R. M., Vornholt S. M., Ettlinger R., Netzsch P., Stanzione M. G., Rice C. M., Elliott C., Russell S. E., Warren M. R., Ashbrook S. E., Morris R. E.. In Situ Single-Crystal X-Ray Diffraction Studies of Physisorption and Chemisorption of SO2 within a Metal-Organic Framework and Its Competitive Adsorption with Water. J. Am. Chem. Soc. 2024;146(5):3270–3278. doi: 10.1021/jacs.3c11847. PubMed DOI PMC
Smith G. L., Eyley J. E., Han X., Zhang X., Li J., Jacques N. M., Godfrey H. G. W., Argent S. P., McCormick McPherson L. J., Teat S. J., Cheng Y., Frogley M. D., Cinque G., Day S. J., Tang C. C., Easun T. L., Rudić S., Ramirez-Cuesta A. J., Yang S., Schröder M.. Reversible Coordinative Binding and Separation of Sulfur Dioxide in a Robust Metal–Organic Framework with Open Copper Sites. Nat. Mater. 2019;18(12):1358–1365. doi: 10.1038/s41563-019-0495-0. PubMed DOI
Bloch W. M., Champness N. R., Doonan C. J.. X-Ray Crystallography in Open-Framework Materials. Angew. Chem., Int. Ed. 2015;54(44):12860–12867. doi: 10.1002/anie.201501545. PubMed DOI
Yu J., Balbuena P. B.. Water Effects on Postcombustion Co2 Capture in Mg-MOF-74. J. Phys. Chem. C. 2013;117(7):3383–3388. doi: 10.1021/jp311118x. DOI
Zhu M., Hu P., Tong Z., Zhao Z., Zhao Z.. Enhanced Hydrophobic MIL(Cr) Metal-Organic Framework with High Capacity and Selectivity for Benzene VOCs Capture from High Humid Air. Chem. Eng. J. 2017;313:1122–1131. doi: 10.1016/j.cej.2016.11.008. DOI
Cattaneo D., Warrender S. J., Duncan M. J., Kelsall C. J., Doherty M. K., Whitfield P. D., Megson I. L., Morris R. E.. Tuning the Nitric Oxide Release from CPO-27 MOFs. RSC Adv. 2016;6(17):14059–14067. doi: 10.1039/C5RA24023A. PubMed DOI PMC
Hinks N. J., McKinlay A. C., Xiao B., Wheatley P. S., Morris R. E.. Metal Organic Frameworks as NO Delivery Materials for Biological Applications. Microporous Mesoporous Mater. 2010;129(3):330–334. doi: 10.1016/j.micromeso.2009.04.031. DOI
Bonino F., Chavan S., Vitillo J. G., Groppo E., Agostini G., Lamberti C., Dietzel P. D. C., Prestipino C., Bordiga S.. Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO. Chem. Mater. 2008;20(15):4957–4968. doi: 10.1021/cm800686k. DOI
Vornholt S. M., Elliott C. G., Rice C. M., Russell S. E., Kerr P. J., Rainer D. N., Mazur M., Warren M. R., Wheatley P. S., Morris R. E.. Controlled Synthesis of Large Single Crystals of Metal-Organic Framework CPO-27-Ni Prepared by a Modulation Approach: In Situ Single-Crystal X-Ray Diffraction Studies. Chem. - Eur. J. 2021;27(33):8537–8546. doi: 10.1002/chem.202100528. PubMed DOI PMC
Jiang H., Wang Q., Wang H., Chen Y., Zhang M.. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3. ACS Appl. Mater. Interfaces. 2016;8(40):26817–26826. doi: 10.1021/acsami.6b08851. PubMed DOI
Sun W., Lin L. C., Peng X., Smit B.. Computational Screening of Porous Metal-Organic Frameworks and Zeolites for the Removal of SO2 and NOx from Flue Gases. AIChE J. 2014;60(6):2314–2323. doi: 10.1002/aic.14467. DOI
Shi Y., Chu Q., Xiong W., Gao J., Huang L., Zhang Y., Ding Y.. A New Type Bimetallic NiMn-MOF-74 as an Efficient Low-Temperatures Catalyst for Selective Catalytic Reduction of NO by CO. Chem. Eng. Process. 2021;159:108232. doi: 10.1016/j.cep.2020.108232. DOI
Rosnes M. H., Opitz M., Frontzek M., Lohstroh W., Embs J. P., Georgiev P. A., Dietzel P. D. C.. Intriguing Differences in Hydrogen Adsorption in CPO-27 Materials Induced by Metal Substitution. J. Mater. Chem. A. 2015;3(9):4827–4839. doi: 10.1039/C4TA05794E. DOI
Rosnes M. H., Pato-Doldán B., Johnsen R. E., Mundstock A., Caro J., Dietzel P. D. C.. Role of the Metal Cation in the Dehydration of the Microporous Metal–Organic Frameworks CPO-27-M. Microporous Mesoporous Mater. 2020;309:110503. doi: 10.1016/j.micromeso.2020.110503. DOI
Tan K., Zuluaga S., Gong Q., Gao Y., Nijem N., Li J., Thonhauser T., Chabal Y. J.. Competitive Coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74 (M = Mg, Co, Ni): The Role of Hydrogen Bonding. Chem. Mater. 2015;27(6):2203–2217. doi: 10.1021/acs.chemmater.5b00315. DOI
Valenzano L., Civalleri B., Chavan S., Palomino G. T., Areán C. O., Bordiga S.. Computational and Experimental Studies on the Adsorption of CO, N 2, and CO2 on Mg-MOF-74. J. Phys. Chem. C. 2010;114(25):11185–11191. doi: 10.1021/jp102574f. DOI
Giacobbe C., Lavigna E., Maspero A., Galli S.. Elucidating the CO2 Adsorption Mechanisms in the Triangular Channels of the Bis(Pyrazolate) MOF Fe2(BPEB)3 by: In Situ Synchrotron X-Ray Diffraction and Molecular Dynamics Simulations. J. Mater. Chem. A. 2017;5(32):16964–16975. doi: 10.1039/C7TA04501H. DOI
Lill J., Dejoie C., Giacobbe C., Fitch A. N.. Adsorption of CO2Molecules in Silicalite: Structural Investigation and Isotherm Modeling Using in Situ High-Resolution Powder X-Ray Diffraction. J. Phys. Chem. C. 2022;126(4):2214–2225. doi: 10.1021/acs.jpcc.1c09732. DOI
Lenzen D., Eggebrecht J. G., Mileo P. G. M., Fröhlich D., Henninger S., Atzori C., Bonino F., Lieb A., Maurin G., Stock N.. Unravelling the Water Adsorption in a Robust Iron Carboxylate Metal-Organic Framework. Chem. Commun. 2020;56(67):9628–9631. doi: 10.1039/D0CC03489D. PubMed DOI
Vismara R., Terruzzi S., Maspero A., Grell T., Bossola F., Sironi A., Galli S., Navarro J. A. R., Colombo V.. CO2 Adsorption in a Robust Iron(III) Pyrazolate-Based MOF: Molecular-Level Details and Frameworks Dynamics From Powder X-Ray Diffraction Adsorption Isotherms. Adv. Mater. 2024;36(12):2209907. doi: 10.1002/adma.202209907. PubMed DOI
Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H.. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009;42(2):339–341. doi: 10.1107/S0021889808042726. DOI
Steiner T.. The Hydrogen Bond in the Solid State. Angew. Chem., Int. Ed. 2002;41:48–76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U. PubMed DOI
Lee K., Howe J. D., Lin L. C., Smit B., Neaton J. B.. Small-Molecule Adsorption in Open-Site Metal-Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chem. Mater. 2015;27(3):668–678. doi: 10.1021/cm502760q. DOI
Hu J., Li L., Li H., Zhai Y., Tang F., Zhang Z., Chen B.. Bimetal NiCo-MOF-74 for Highly Selective NO Capture from Flue Gas under Ambient Conditions. RSC Adv. 2022;12(52):33716–33724. doi: 10.1039/D2RA05974F. PubMed DOI PMC
Winter G.. Xia2: An Expert System for Macromolecular Crystallography Data Reduction. J. Appl. Crystallogr. 2010;43(1):186–190. doi: 10.1107/S0021889809045701. DOI
Winter G., Waterman D. G., Parkhurst J. M., Brewster A. S., Gildea R. J., Gerstel M., Fuentes-Montero L., Vollmar M., Michels-Clark T., Young I. D., Sauter N. K., Evans G.. DIALS: Implementation and Evaluation of a New Integration Package. Acta Crystallogr., Sect. D: Struct. Biol. 2018;74(2):85–97. doi: 10.1107/S2059798317017235. PubMed DOI PMC
Sheldrick G. M.. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008;64(1):112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Sheldrick G. M.. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015;71(1):3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Palmer D. C.. Visualization and Analysis of Crystal Structures Using CrystalMaker Software. Z. Kristallogr. - Cryst. Mater. 2015;230:559–572. doi: 10.1515/zkri-2015-1869. DOI