High-frequency sampling unveils biotic and abiotic drivers of rapid phytoplankton morphological changes

. 2025 Sep 04 ; () : . [epub] 20250904

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40908506

Grantová podpora
e-INFRA CZ 90254 Ministerstvo Školství, Mládeže a Tělovýchovy
23-06881S Grantová Agentura České Republiky

Phytoplankton, as primary producers, play a key role in aquatic ecosystems. Their community turnover is shaped by morphological traits that enable adaptation to diverse abiotic and biotic factors. Yet, the temporal scale of these dynamics remains poorly understood due to limited high-frequency sampling studies. Employing DNA metabarcoding, we assessed the community composition of the phytoplankton lineage Synurales (Chrysophyceae) at 3-d intervals during 70 d at a shallow peat bog lake in the Czech Republic. The selected group possesses a variety of species-specific key morphological traits, such as cell size, coloniality, and bristle formation. Using a custom reference database of cultured species, we assigned 99.93% of eDNA reads to 74 species-level lineages with known morphological traits. Community changes in colonial species were influenced by abiotic drivers such as silica concentration and wind speed. By contrast, shifts in unicellular species communities were mainly driven by Cladocera predators, influencing the occurrence of bristle-bearing species. Changes in species composition and morphological traits occurred within days, mirroring environmental variability. Achieving such fine-scale resolution, especially for small or rare taxa, would be extremely difficult using microscopy alone. eDNA enabled high-resolution community profiling and abundance estimation, demonstrating its key role and the importance of comprehensive reference databases.

Zobrazit více v PubMed

Alvarez‐Cobelas M, Rojo C, Benavent‐Corai J. 2019. Long‐term phytoplankton dynamics in a complex temporal realm. Scientific Reports 9: 15967.

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. [WWW document] URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Arvola L, Salonen K, Kankaala P, Lehtovaara A. 1992. Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia 229: 253–269.

Bai Y, Huang T, Miao W. 2023. Spatio‐temporal dynamics of phytoplankton in a diversion reservoir and the major influencing factors: taxonomic versus functional groups classification. Environmental Science and Pollution Research 30: 111344–111356.

Bálint M, Schmidt P, Sharma R, Thines M, Schmitt I. 2014. An Illumina metabarcoding pipeline for fungi. Ecology and Evolution 4: 2642–2653.

Bock C, Jensen M, Forster D, Marks S, Nuy J, Psenner R, Beisser D, Boenigk J. 2020. Factors shaping community patterns of protists and bacteria on a European scale. Environmental Microbiology 22: 2243–2260.

Brunson J. 2020. ggalluvial: layered grammar for alluvial plots. Journal of Open Source Software 5: 2017.

Burki F, Sandin MM, Jamy M. 2021. Diversity and ecology of protists revealed by metabarcoding. Current Biology 31: R1267–R1280.

Burns CW. 1968. The relationship between body size of filter‐feeding Cladocera and the maximum size of particle ingested. Limnology and Oceanography 13: 675–678.

del Campo J, Carlos‐Oliveira M, Čepička I, Hehenberger E, Horák A, Karnkowska A, Kolisko M, Lara E, Lukeš J, Pánek T et al. 2024. The protist cultural renaissance. Trends in Microbiology 32: 128–131.

Downing JA, Peters RH. 1980. The effect of body size and food concentration on the in situ filtering rate of Sida crystallina. Limnology and Oceanography 25: 883–895.

Dunthorn M, Klier J, Bunge J, Stoeck T. 2012. Comparing the hyper‐variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. Journal of Eukaryotic Microbiology 59: 185–187.

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200.

Egloff DA, Palmer DS. 1971. Size relations of the filtering area of two Daphnia species. Limnology and Oceanography 16: 900–905.

Fonseca VG, Nichols B, Lallias D, Quince C, Carvalho GR, Power DM, Creer S. 2012. Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analyses. Nucleic Acids Research 40: e66.

Fryer G. 1968. Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 254: 221–384.

Gauld DT. 1957. A peritrophic membrane in Calanoid Copepods. Nature 179: 325–326.

Gavrilko DE, Shurganova GV, Kudrin IA, Yakimov BN. 2020. Identification of freshwater zooplankton functional groups based on the functional traits of species. Povolzhskiy Journal of Ecology 2020: 290–306.

Geller W, Müller H. 1981. The filtration apparatus of Cladocera: Filter mesh‐sizes and their implications on food selectivity. Oecologia 49: 316–321.

Gilbert JJ. 2022. Food niches of planktonic rotifers: diversification and implications. Limnology and Oceanography 67: 2218–2251.

Haney JF. 1985. Regulation of cladoceran filtering rates in nature by body size, food concentration, and diel feeding patterns. Limnology and Oceanography 30: 397–411.

Harris GP. 1986. Phytoplankton ecology: structure, function and fluctuation. London, NY, USA: Chapman and Hall.

Harris GP, Smith REH. 1977. Observations of small‐scale spatial patterns in phytoplankton populations. Limnology and Oceanography 22: 887–899.

Hessen DO, van Donk E. 1993. Morphological changes in Scenedesmus induced by substances released from Daphnia. Archiv für Hydrobiologie 127: 129–140.

Hochberg R, Wallace RL, Walsh EJ. 2015. Soft bodies, hard jaws: an introduction to the symposium, with rotifers as models of jaw diversity. Integrative and Comparative Biology 55: 179–192.

Imaizumi K, Sano M, Kondo H, Hirono I. 2023. Insights into a chitin synthase of kuruma shrimp Penaeus japonicus and its role in peritrophic membrane and cuticle formation. Marine Biotechnology 25: 837–845.

Jadrná I, Siver PA, Škaloud P. 2021. Morphological evolution of silica scales in the freshwater genus Synura (Stramenopiles). Journal of Phycology 57: 355–369.

Jadrná I, Škaloud P. 2025. Exploring the factors shaping microscopic morphological traits: insights from the chrysophycean genus Synura (Stramenopiles). European Journal of Phycology 60: 67–83.

Kamil B. 2016. MuMIn: multi‐model inference. R package version 1.48.4. R package version 1.

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166.

Kazamia E, Helliwell KE, Purton S, Smith AG. 2016. How mutualisms arise in phytoplankton communities: building eco‐evolutionary principles for aquatic microbes. Ecology Letters 19: 810–822.

Kovalenko KE, Reavie ED, Figary S, Rudstam LG, Watkins JM, Scofield A, Filstrup CT. 2023. Zooplankton‐phytoplankton biomass and diversity relationships in the Great Lakes. PLoS One 18: e0292988.

Kristiansen J. 2005. Golden algae: a biology of chrysophytes. Königstein, Germany: Koeltz Scientific Books.

Kristiansen J, Preisig HR. 2007. Chrysophyte and haptophyte algae, part 2: Synurophyceae. In: Budel B, Gärtner G, Krienitz L, R PH, eds. Süsswasserflora von Mitteleuropa, vol. 1‐2. Berlin, Heidelberg, Germany: Spektrum Akad. Verlag, Springer, 1–252.

Kristiansen J, Škaloud P. 2017. Chrysophyta. In: Archibald JM, Simpson AGB, eds. Handbook of the Protists, 2nd edn. Cham, Switzerland: Springer International Publishing, 331–366.

Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12: 118–123.

Lampert W, Rothhaupt KO, von Elert E. 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnology and Oceanography 39: 1543–1550.

Lehman JT, Sandgren CD. 1985. Species‐specific rates of growth and grazing loss among freshwater algae. Limnology and Oceanography 30: 34–46.

Lengyel E, Barreto S, Padisák J, Stenger‐Kovács C, Lázár D, Buczkó K. 2023. Contribution of silica‐scaled chrysophytes to ecosystems services: a review. Hydrobiologia 850: 2735–2756.

Lepori F. 2019. Effects of zooplankton structure and phosphorus concentration on phytoplankton biomass in a freshwater pelagic food chain. Fundamental and Applied Limnology 192: 305–317.

Litchman E. 2000. Growth rates of phytoplankton under fluctuating light. Freshwater Biology 44: 223–235.

Litchman E, Klausmeier CA. 2001. Competition of phytoplankton under fluctuating light. The American Naturalist 157: 170–187.

Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. 2015. Swarm v2: highly‐scalable and high‐resolution amplicon clustering. PeerJ 3: e1420.

Marañón E, Cermeño P, López‐Sandoval DC, Rodríguez‐Ramos T, Sobrino C, Huete‐Ortega M, Blanco JM, Rodríguez J. 2013. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecology Letters 16: 371–379.

Margalef R. 1978. Life‐forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

Marzetz V, Spijkerman E, Striebel M, Wacker A. 2020. Phytoplankton community responses to interactions between light intensity, light variations, and phosphorus supply. Frontiers in Environmental Science 8: 539733.

Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PANDAseq: paired‐end assembler for illumina sequences. BMC Bioinformatics 13: 31.

Mašková T, Herben T, Hošková K, Koubek T. 2022. Shoot senescence in herbaceous perennials of the temperate zone: Identifying drivers of senescence pace and shape. Journal of Ecology 110: 1296–1311.

McMurdie PJ, Holmes S. 2013. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217.

Montemezzani V, Duggan IC, Hogg ID, Craggs RJ. 2015. A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways. Algal Research 11: 211–226.

Moreno‐Ostos E, Cruz‐Pizarro L, Basanta A, George DG. 2009. The influence of wind‐induced mixing on the vertical distribution of buoyant and sinking phytoplankton species. Aquatic Ecology 43: 271–284.

Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. 2024. Integrating depth‐dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. Environmental Microbiomes 19: 31.

Mukherjee I, Hodoki Y, Nakano S. 2017. Seasonal dynamics of heterotrophic and plastidic protists in the water column of Lake Biwa, Japan. Aquatic Microbial Ecology 80: 123–137.

Naselli‐Flores L, Barone R. 2011. Invited review – fight on plankton! or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie, Algologie 32: 157–204.

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ‐TREE: a fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Solymos P, Stevens MHH, Szoecs E et al. 2022. vegan: community ecology package. R package version 2.6‐4. Cran.

Padisák J, Hajnal É, Naselli‐Flores L, Dokulil MT, Nõges P, Zohary T. 2010. Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control. Hydrobiologia 639: 205–220.

Padisák J, Krienitz L, Scheffler W, Koschel R, Kristiansen J, Grigorszky I. 1998. Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995. Hydrobiologia 369‐370: 179–197.

Pannard A, Bormans M, Lagadeuc Y. 2008. Phytoplankton species turnover controlled by physical forcing at different time scales. Canadian Journal of Fisheries and Aquatic Sciences 65: 47–60.

Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M et al. 2012. CBOL protist working group: Barcoding Eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biology 10: e1001419.

Payne RJ. 2013. Seven reasons why protists make useful bioindicators. Acta Protozoologica 52: 105–113.

Philips EJ, Cichra M, Havens K, Hanton C, Badylak S, Rueter B, Randall M, Hansen P. 1997. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow sub‐tropical lake. Journal of Plankton Research 19: 319–342.

Pusztai M, Škaloud P. 2019. Elucidating the evolution and diversity of Uroglena‐like colonial flagellates (Chrysophyceae): polyphyletic origin of the morphotype. European Journal of Phycology 54: 404–416.

R Core Team. 2023. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R‐project.org/.

Reynolds CS. 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecography 3: 141–159.

Reynolds CS. 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

Reynolds CS. 2006. The ecology of phytoplankton. Cambridge, UK: Cambridge University Press.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.

Rolland A, Bertrand F, Maumy M, Jacquet S. 2009. Assessing phytoplankton structure and spatio‐temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Research 43: 3155–3168.

Salmaso N. 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along complex environmental gradients. Hydrobiologia 502: 13–36.

Salonen K, Järvinen M, Aalto T, Likolammi M, Lindblom V, Münster U, Sarvala J. 2024. Dynamic adaptation of phytoplankton vertical migration to changing grazing and nutrient conditions. Hydrobiologia 851: 3639–3663.

Sandgren CD, Hall SA, Barlow SB. 1996. Siliceous scale production in chrysophyte and synurophyte algae. I. Effects of silica‐limited growth on cell silica content, scale morphology, and the construction of the scale layer of Synura petersenii. Journal of Phycology 32: 675–692.

Seymour JR, Amin SA, Raina J‐B, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature Microbiology 2: 17065.

Shatwell T, Nicklisch A, Köhler J. 2012. Temperature and photoperiod effects on phytoplankton growing under simulated mixed layer light fluctuations. Limnology and Oceanography 57: 541–553.

Šimek K, Hornák K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, Sed'a J. 2008. Spatio‐temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquatic Microbial Ecology 51: 249–262.

Šimek K, Kasalický V, Jezbera J, Horňák K, Nedoma J, Hahn MW, Bass D, Jost S, Boenigk J. 2013. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME Journal 7: 1519–1530.

Simon M, López‐García P, Deschamps P, Moreira D, Restoux G, Bertolino P, Jardillier L. 2015. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. The ISME Journal 9: 1941–1953.

Siver PA. 1991. The Biology of Mallomonas. Dordrecht, the Netherlands: Springer.

Siver PA. 1995. The distribution of chrysophytes along environmental gradients: their use as biological indicators. In: Chrysophyte algae. Cambridge, UK: Cambridge University Press, 232–268.

Siver PA. 2015. The Synurophyceae. In: Wehr JD, Sheath RG, Kociolek JP, eds. Freshwater algae of North America: ecology and classification. San Diego, CA, USA: Academic Press, 605–650.

Siver PA, Chock JS. 1986. Phytoplankton dynamics in a chrysophycean lake. In: Kristiansen J, Andersen RA, eds. Chrysophytes: aspects and problems. Cambridge, UK: Cambridge University Press, 165–183.

Siver PA, Hamer JS. 1992. Seasonal periodicity of Chrysophyceae and Synurophyceae in a small New England lake: Implications for paleolimnological research. Journal of Phycology 28: 186–198.

Škaloud P, Škaloudová M, Jadrná I, Bestová H, Pusztai M, Kapustin D, Siver PA. 2020. Comparing morphological and molecular estimates of species diversity in the freshwater genus Synura (Stramenopiles): a model for understanding diversity of Eukaryotic microorganisms. Journal of Phycology 56: 574–591.

Škaloud P, Škaloudová M, Pichrtová M, Němcová Y, Kreidlová J, Pusztai M. 2013. www. chrysophytes.eu – a database on distribution and ecology of silica‐scaled chrysophytes in Europe. Nova Hedwigia, Beiheft 142: 141–146.

Škaloud P, Steinová J, Řídká T, Vančurová L, Peksa O. 2015. Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). Journal of Phycology 51: 507–527.

Smirnov NN. 2017. Ecophysiology. In: Physiology of the Cladocera, 2nd edn. Amsterdam, the Netherlands: Academic Press.

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312–1313.

Starkweather PL. 1975. Diel patterns of grazing in Daphnia pulex Leydig. SIL Proceedings 1922‐2010: 2851–2857.

Sterner RW. 2009. Role of zooplankton in aquatic ecosystems. In: Likens GE, ed. Encyclopedia of Inland Waters. Amsterdam, the Netherlands: Elsevier, 678–688.

Větrovský T, Baldrian P, Morais D. 2018. SEED 2: a user‐friendly platform for amplicon high‐throughput sequencing data analyses. Bioinformatics 34: 2292–2294.

Wee JL, Fasone LD, Sattler A, Starks WW, Hurley DL. 2001. ITS/5.8S DNA sequence variation in 15 isolates of Synura petersenii Korshikov (Synurophyceae). Nova Hedwigia. Beiheft 122: 245–258.

Wei T, Simko V. 2024. R package ‘corrplot’: visualization of a correlation matrix (version 0.95).

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al., eds. PCR protocols. New York, NY, USA: Academic Press, 315–322.

Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York, NY, USA: Springer‐Verlag.

Willén E. 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502: 315–324.

de Wit HA, Valinia S, Weyhenmeyer GA, Futter MN, Kortelainen P, Austnes K, Hessen DO, Räike A, Laudon H, Vuorenmaa J. 2016. Current browning of surface waters will be further promoted by wetter climate. Environmental Science & Technology Letters 3: 430–435.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...