Lessons Learned From Awake ECMO Approach in Covid-19-Related Acute Respiratory Distress Syndrome - a Scoping Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40385980
PubMed Central
PMC12085139
DOI
10.2147/tcrm.s507120
PII: 507120
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19-related acute respiratory distress syndrome, awake venovenous extracorporeal membrane oxygenation, barotrauma, bleeding, refusal of intubation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During the COVID-19 pandemic, specific COVID-19-related conditions renewed interest in the full-awake venovenous extracorporeal membrane oxygenation ( fa V-V ECMO) approach, in which ECMO is applied to awake, cooperative, and non-intubated patients. This scoping review aims to provide a descriptive overview of fa V-V ECMO in patients with COVID-19-related acute respiratory distress syndrome (CARDS). We searched the PubMed, Web of Science, and Scopus databases using the keywords "awake ECMO" or "spontaneous breathing AND ECMO", combined with "COVID-19", "SARS-CoV-2" or "coronavirus", utilizing the Boolean operator "AND". The search included papers published from November 1, 2019, to December 31, 2024. Sixty-four papers were assessed for eligibility at the abstract level, and fourteen articles (seven small-sample cohort studies and seven case reports) comprising 95 patients were included in the final analysis. The most frequent reasons for preferring fa V-V ECMO over mechanical ventilation were barotrauma and patient refusal of intubation and mechanical ventilation. The fa V-V ECMO strategy was successful (ie, patients not intubated, disconnected from ECMO, and discharged from the hospital) in 36.4% of cases (cohort studies only). The incidence of defined severe adverse events (bleeding, thrombosis, cannula malposition, delirium, and progression of barotrauma) was considered low. The mortality rate for CARDS patients treated with fa V-V ECMO (including only patients from cohort studies) reached 33.0%, notably lower than the 48% reported for CARDS patients treated with V-V ECMO in the ELSO registry. Patients who were intubated due to worsening respiratory failure during fa V-V ECMO had significantly higher mortality. Infectious complications, sepsis, and multiorgan failure were the most frequent causes of death. However, significant heterogeneity in the definitions and reporting of management, ECMO-related complications, and outcomes was observed across the papers. Despite the heterogeneity of the data, fa V-V ECMO in CARDS patients can be considered a safe approach associated with a lower mortality rate than that reported in the overall V-V ECMO CARDS population.
Zobrazit více v PubMed
The Extracorporeal Life Support Organization. Extracorporeal Membrane Oxygenation (ECMO) in COVID-19. Available from: https://www.elso.org/covid-19.aspx. Accessed March 15, 2025
Gisondi MA, Chambers D, La TM, et al.. A stanford conference on social media, ethics, and COVID-19 misinformation (INFODEMIC): qualitative thematic analysis. J Med Internet Res. 2022;24(2):e35707. doi:10.2196/35707 PubMed DOI PMC
Chou WS, Gaysynsky A, Vanderpool RC. The COVID-19 misinfodemic: moving beyond fact-checking. Health Educ Behav. 2021;48(1):9–13. doi:10.1177/1090198120980675 PubMed DOI PMC
Busana M, Gasperetti A, Giosa L, et al.. Prevalence and outcome of silent hypoxemia in COVID-19. Minerva Anestesiol. 2021;87(3):325–333. doi:10.23736/S0375-9393.21.15245-9 PubMed DOI
Brouqui P, Amrane S, Million M, et al.. Asymptomatic hypoxia in COVID-19 is associated with poor outcome. Int J Infect Dis. 2021;102:233–238. doi:10.1016/j.ijid.2020.10.067 PubMed DOI PMC
Porzionato A, Emmi A, Contran M, et al. Case report: the carotid body in COVID-19: histopathological and virological analyses of an autopsy case series. Front Immunol. 2021;12:736529. doi:10.3389/fimmu.2021.736529 PubMed DOI PMC
Kallet RH, Branson RD, Lipnick MS. Respiratory drive, dyspnea, and silent hypoxemia: a physiological review in the context of COVID-19. Respir Care. 2022;67(10):1343–1360. doi:10.4187/respcare.10075 PubMed DOI
Spinelli E, Mauri T, Beitler JR, et al.. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46(4):606–618. doi:10.1007/s00134-020-05942-6 PubMed DOI PMC
Paternoster G, Belmonte G, Scarano E, et al.. COVID-macklin study group. macklin effect on baseline chest CT scan accurately predicts barotrauma in COVID-19 patients. Respir Med. 2022;197(106853):106853. doi:10.1016/j.rmed.2022.106853 PubMed DOI PMC
Casadiego Monachello FJ, de la Torre Terron MC, Mendez Barraza JA, et al.. Macklin effect as an early radiological predictor of barotrauma in ARDS COVID-19 patients in invasive mechanical ventilation. Med Intensiva. 2023;47(4):235–236. doi:10.1016/j.medin.2022.07.003 PubMed DOI PMC
Melhorn J, Achaiah A, Conway FM, et al.. Pneumomediastinum in COVID-19: a phenotype of severe COVID-19 pneumonitis? The results of the United Kingdom (POETIC) survey. Eur Respir J. 2022;60(3):2102522. doi:10.1183/13993003.02522-2021 PubMed DOI PMC
Woo W, Kipkorir V, Marza AM, et al.. International covid-pneumothorax working group Icp-Wg. prognosis of spontaneous pneumothorax/pneumomediastinum in coronavirus disease 2019: the CoBiF score. J Clin Med. 2022;11(23):7132. doi:10.3390/jcm11237132 PubMed DOI PMC
Serck N, Piagnerelli M, Augy JL, et al.. Barotrauma in COVID-19 acute respiratory distress syndrome: retrospective analysis of the COVADIS prospective multicenter observational database. BMC Anesthesiol. 2023;23(1):138. doi:10.1186/s12871-023-02093-1 PubMed DOI PMC
Vetrugno L, Castaldo N, Fantin A, et al.. Ventilatory associated barotrauma in COVID-19 patients: a multicenter observational case-control study (COVI-MIX-study). Pulmonology. 2023;29(6):457–468. doi:10.1016/j.pulmoe.2022.11.002 PubMed DOI PMC
Paternoster G, Bertini P, Belletti A, et al. Venovenous extracorporeal membrane oxygenation in awake non-intubated patients with COVID-19 ARDS at high risk for barotrauma. J Cardiothorac Vasc Anesth. 2022;36(8):2975–2982. doi:10.1053/j.jvca.2022.03.011 PubMed DOI PMC
Page MJ, McKenzie JE, Bossuyt PM, et al.. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021:372. PubMed PMC
Assanangkornchai N, Slobod D, Qutob R, et al.. Awake venovenous extracorporeal membrane oxygenation for coronavirus disease 2019 acute respiratory failure. Crit Care Explor. 2021;3(7):e0489. doi:10.1097/CCE.0000000000000489 PubMed DOI PMC
Attou R, Redant S, Velissaris D, et al.. Extracorporeal membrane oxygenation versus invasive ventilation in patients with COVID-19 acute respiratory distress syndrome and pneumomediastinum: a cohort trial. Artif Organs. 2024;48(9):1038–1048. doi:10.1111/aor.14760 PubMed DOI
Galante O, Hasidim A, Almog Y, et al.. for Awake ECMO research team. extracorporal membrane oxygenation in nonintubated patients (Awake ECMO) With COVID-19 adult respiratory distress syndrome: the israeli experience. ASAIO J. 2023;69(8):e363–e367. doi:10.1097/MAT.0000000000001996 PubMed DOI PMC
Kunavarapu C, Yeramaneni S, Melo J, et al.. Clinical outcomes of severe COVID-19 patients receiving early VV-ECMO and the impact of pre-ECMO ventilator use. Int J Artif Organs. 2021;44(11):861–867. doi:10.1177/03913988211047604 PubMed DOI
Mang S, Reyher C, Mutlak H, et al.. AWECO-study group. awake extracorporeal membrane oxygenation for COVID-19-induced acute respiratory distress syndrome. Am J Respir Crit Care Med. 2022;205(7):847–851. doi:10.1164/rccm.202105-1189LE PubMed DOI PMC
Sklienka P, Burša F, Frelich M, et al.. Optimizing the safety and efficacy of awake venovenous extracorporeal membrane oxygenation in patients with COVID-19-related ARDS. Ther Adv Respir Dis. 2024;18:17534666241282590. doi:10.1177/17534666241282590 PubMed DOI PMC
Aziz JE, Dellavolpe J, Aziz S, et al. An extracorporeal membrane oxygenation first strategy in COVID-19 acute respiratory distress syndrome. ASAIO J. 2021;67(10):1097–1099. doi:10.1097/MAT.0000000000001554 PubMed DOI PMC
Azzam MH, Mufti HN, Bahaudden H, et al.. Awake extracorporeal membrane oxygenation in coronavirus disease 2019 patients without invasive mechanical ventilation. Crit Care Explor. 2021;3(6):e0454. doi:10.1097/CCE.0000000000000454 PubMed DOI PMC
Ghizlane EA, Manal M, Sara B, et al.. Early initiation of awake venovenous extracorporeal membrane oxygenation (ECMO) in critical COVID-19 pneumonia: a case reports. Ann Med Surg Lond. 2021;68:102641. doi:10.1016/j.amsu.2021.102641 PubMed DOI PMC
Loyalka P, Cheema FH, Rao H, et al.. Early usage of extracorporeal membrane oxygenation in the absence of invasive mechanical ventilation to Treat COVID-19-related hypoxemic respiratory failure. ASAIO J. 2021;67(4):392–394. doi:10.1097/MAT.0000000000001393 PubMed DOI
Schmidt M, de Chambrun MP, Lebreton G, et al.. Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in a patient with severe COVID-19-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2021;203(12):1571–1573. doi:10.1164/rccm.202102-0259LE PubMed DOI PMC
Soroksky A, Tocut M, Rosman Z, et al.. Awake extracorporeal membrane oxygenation in a patient with COVID-19 pneumonia and severe hypoxemic respiratory failure. Eur Rev Med Pharmacol Sci. 2022;26(5):1761–1764. doi:10.26355/eurrev_202203_28246 PubMed DOI
Umlauf J, Eilenberger S, Spring O. successful treatment of a patient with COVID-19-induced severe ARDS, Pneumothorax, and pneumomediastinum with awake vv-ECMO implantation. Case Rep Crit Care. 2022;2022:6559385. doi:10.1155/2022/6559385 PubMed DOI PMC
Fletcher JJ, Aughenbaugh A, Svabek C, et al.. Ventilator avoidance among critically ill COVID-19 patients with acute respiratory distress syndrome. J Int Med Res. 2022;50(11):3000605221135446. doi:10.1177/03000605221135446 PubMed DOI PMC
Cai Z, Guo X, Lv X, et al.. Patient self-inflicted lung injury associated pneumothorax/pneumomediastinum is a risk factor for worse outcomes of severe COVID-19: a case-control study. Sci Rep. 2024;14(1):15437. doi:10.1038/s41598-024-66229-0 PubMed DOI PMC
Shrestha DB, Sedhai YR, Budhathoki P, et al.. Pulmonary barotrauma in COVID-19: a systematic review and meta-analysis. Ann Med Surg Lond. 2022;73:103221. PubMed PMC
Umbrello M, Venco R, Antonucci E, et al. Incidence, clinical characteristics and outcome of barotrauma in critically ill patients with COVID-19: a systematic review and meta-analysis. Minerva Anestesiol. 2022;88(9):706–718. doi:10.23736/S0375-9393.22.16258-9 PubMed DOI
Schmidt M, Hajage D, Lebreton G, et al. Groupe de recherche clinique en reanimation et soins intensifs du patient en insuffisance respiratoire aiguE (GRC-RESPIRE) sorbonne université; paris-sorbonne ECMO-COVID investigators. extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020;8(11):1121–1131. doi:10.1016/S2213-2600(20)30328-3 PubMed DOI PMC
Hajage D, Combes A, Guervilly C, et al.. for COVID-ICU investigators. extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: an emulated target trial analysis. Am J Respir Crit Care Med. 2022;206(3):281–294. PMID: 35533052; PMCID: PMC9890253. doi:10.1164/rccm.202111-2495OC PubMed DOI PMC
Öner Ö, Ergan B, Kizil AS, et al.. Investigation of high flow nasal cannule efficiency with electric impedance tomography based parameters in COVID-19 adults patients: a retrospective study. PeerJ. 2023;14:11. PubMed PMC
Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453–1463. doi:10.1007/s00134-017-4890-1 PubMed DOI
Basile MC, Mauri T, Spinelli E, et al.. Nasal high flow higher than 60 L/min in patients with acute hypoxemic respiratory failure: a physiological study. Crit Care. 2020;24(1):654. doi:10.1186/s13054-020-03344-0 PubMed DOI PMC
Tobin MJ. Why physiology is critical to the practice of Medicine: a 40-year personal perspective. Clin Chest Med. 2019;40(2):243–257. doi:10.1016/j.ccm.2019.02.012 PubMed DOI
Colombo J, Spinelli E, Grasselli G, et al. Detection of strong inspiratory efforts from the analysis of central venous pressure swings: a preliminary clinical study. Minerva Anestesiologica. 2020;86(12):1296–1304. doi:10.23736/S0375-9393.20.14323-2 PubMed DOI
Tonelli R, Cortegiani A, Marchioni A, et al.. Nasal pressure swings as the measure of inspiratory effort in spontaneously breathing patients with de novo acute respiratory failure. Crit Care. 2022;26(1):70. doi:10.1186/s13054-022-03938-w PubMed DOI PMC
Gil-Rodríguez J, Pérez de Rojas J, Aranda-Laserna P, et al.. Ultrasound findings of lung ultrasonography in COVID-19: a systematic review. Eur J Radiol. 2022;148:110156. doi:10.1016/j.ejrad.2022.110156 PubMed DOI PMC
Dargent A, Chatelain E, Si-Mohamed S, et al.. for COVIDLUS study group. Lung ultrasound score as a tool to monitor disease progression and detect ventilator-associated pneumonia during COVID-19-associated ARDS. Heart Lung. 2021;50(5):700–705. doi:10.1016/j.hrtlng.2021.05.003 PubMed DOI PMC
Guo Y, Lin J, Wu T, et al.. Risk factors for delirium among hospitalized adults with COVID-19: a systematic review and meta-analysis of cohort studies. Int J Nurs Stud. 2023;148:104602. doi:10.1016/j.ijnurstu.2023.104602 PubMed DOI
Xu Z, Wang H, Jiang S, et al.. Brain pathology in COVID-19: clinical manifestations and potential mechanisms. Neurosci Bull. 2024;40(3):383–400. doi:10.1007/s12264-023-01110-0 PubMed DOI PMC
Rego LLD, Salluh JIF, Souza-Dantas VC, et al.. Delirium severity and outcomes of critically ill COVID-19 patients. Crit Care Sci. 2023;35(4):394–401. doi:10.5935/2965-2774.20230170-en PubMed DOI PMC
Ho MH, Lee JJ, Lai PCK, et al.. Prevalence of delirium among critically ill patients who received extracorporeal membrane oxygenation therapy: a systematic review and proportional meta-analysis. Intensive Crit Care Nurs. 2023;79:103498. doi:10.1016/j.iccn.2023.103498 PubMed DOI
Hadano H, Kamio T, Fukaguchi K, et al.. Analysis of adverse events related to extracorporeal membrane oxygenation from a nationwide database of patient-safety accidents in Japan. J Artif Organs. 2023;16:1–8. PubMed PMC
Kim DH, Cho WH, Son J, et al.. Catastrophic mechanical complications of extracorporeal membrane oxygenation. ASAIO J. 2021;67(9):1000–1005. doi:10.1097/MAT.0000000000001354 PubMed DOI
Braune S, Bojes P, Mecklenburg A, et al.. Feasibility, safety, and resource utilisation of active mobilisation of patients on extracorporeal life support: a prospective observational study. Ann Intensive Care. 2020;10(1):161. doi:10.1186/s13613-020-00776-3 PubMed DOI PMC
Cucchi M, Mariani S, De Piero ME, et al.. Awake extracorporeal life support and physiotherapy in adult patients: a systematic review of the literature. Perfusion. 2023;38(5):939–958. doi:10.1177/02676591221096078 PubMed DOI PMC
Bonizzoli M, Lazzeri C, Drago A, et al.. Effects of a physiotherapic program in patients on veno-venous extracorporeal membrane oxygenation: an 8-year single-center experience. Minerva Anestesiol. 2019;85(9):989–994. doi:10.23736/S0375-9393.19.13287-7 PubMed DOI
Nunez JI, Gosling AF, O’Gara B, et al.. Bleeding and thrombotic events in adults supported with venovenous extracorporeal membrane oxygenation: an ELSO registry analysis. Intensive Care Med. 2022;48(2):213–224. doi:10.1007/s00134-021-06593-x PubMed DOI PMC
Jin Y, Zhang Y, Liu J, et al.. Thrombosis and bleeding in patients with COVID-19 requiring extracorporeal membrane oxygenation: a systematic review and meta-analysis. Res Pract Thromb Haemost. 2023;7(2):100103. doi:10.1016/j.rpth.2023.100103 PubMed DOI PMC
Mansour A, Flecher E, Schmidt M, et al.. ECMOSARS investigators. bleeding and thrombotic events in patients with severe COVID-19 supported with extracorporeal membrane oxygenation: a nationwide cohort study. Intensive Care Med. 2022;48(8):1039–1052. doi:10.1007/s00134-022-06794-y PubMed DOI
Lannon M, Duda T, Greer A, et al.. Intracranial hemorrhage in patients treated for SARS-CoV-2 with extracorporeal membrane oxygenation: a systematic review and meta-analysis. J Crit Care. 2023;77:154319. doi:10.1016/j.jcrc.2023.154319 PubMed DOI PMC
Tonna JE, Abrams D, Brodie D, et al. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J. 2021;67(6):601–610. doi:10.1097/MAT.0000000000001432 PubMed DOI PMC
Chlebowski MM, Baltagi S, Carlson M, et al.. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit Care. 2020;24(1):19. doi:10.1186/s13054-020-2726-9 PubMed DOI PMC
Shekar K, Badulak J, Peek G, et al.. ELSO guideline working group. extracorporeal life support organization coronavirus disease 2019 interim guidelines: a consensus document from an international group of interdisciplinary extracorporeal membrane oxygenation providers. ASAIO J. 2020;66(7):707–721. doi:10.1097/MAT.0000000000001193 PubMed DOI PMC
Diaz D, Martinez J, Bushman G, et al.. Anticoagulation strategies in COVID-19 infected patients receiving ECMO support. J Extra Corpor Technol. 2023;55(3):121–129. doi:10.1051/ject/2023027 PubMed DOI PMC
Burša F, Máca J, Sagan J, et al.. A safety comparison of heparin and argatroban anticoagulation in veno-venous extracorporeal membrane oxygenation with a focus on bleeding. Transfus Med. 2024:75–81. PMID: 39375884. doi:10.1111/tme.13102 PubMed DOI PMC
Belletti A, Sofia R, Cicero P, et al.. Extracorporeal membrane oxygenation without invasive ventilation for respiratory failure in adults: a systematic review. Crit Care Med. 2023;51(12):1790–1801. doi:10.1097/CCM.0000000000006027 PubMed DOI
Vincent JL, Zambon M. Why do patients who have acute lung injury/acute respiratory distress syndrome die from multiple organ dysfunction syndrome?Implications for management. Clin Chest Med. 2006;27(4):725–731. doi:10.1016/j.ccm.2006.06.010 PubMed DOI
Del Sorbo L, Slutsky AS. Acute respiratory distress syndrome and multiple organ failure. Curr Opin Crit Care. 2011;17(1):1–6. doi:10.1097/MCC.0b013e3283427295 PubMed DOI