Application of TGA/c-DTA for Distinguishing between Two Forms of Naproxen in Pharmaceutical Preparations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PCN-1-021/K/2/F
Medical University of Silesia
PubMed
37376137
PubMed Central
PMC10303704
DOI
10.3390/pharmaceutics15061689
PII: pharmaceutics15061689
Knihovny.cz E-zdroje
- Klíčová slova
- FTIR, HPLC, TGA, UV spectrophotometry, c-DTA, colorimetric analysis, naproxen acid, naproxen sodium salt, pharmaceutical preparation,
- Publikační typ
- časopisecké články MeSH
Naproxen is one of the most used non-steroidal anti-inflammatory drugs (NSAIDs). It is used to treat pain of various origins, inflammation and fever. Pharmaceutical preparations containing naproxen are available with prescription and over-the-counter (OTC). Naproxen in pharmaceutical preparations is used in the form of acid and sodium salt. From the point of view of pharmaceutical analysis, it is crucial to distinguish between these two forms of drugs. There are many costly and laborious methods to do this. Therefore, new, faster, cheaper and, at the same time, simple-to-perform identification methods are sought. In the conducted studies, thermal methods such as thermogravimetry (TGA) supported by calculated differential thermal analysis (c-DTA) were proposed to identify the type of naproxen in commercially available pharmaceutical preparations. In addition, the thermal methods used were compared with pharmacopoeial methods for the identification of compounds, such as high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectrophotometry, and a simple colorimetric analyses. In addition, using nabumetone, a close structural analog of naproxen, the specificity of the TGA and c-DTA methods was assessed. Studies have shown that the thermal analyses used are effective and selective in distinguishing the form of naproxen in pharmaceutical preparations. This indicates the potential possibility of using TGA supported by c-DTA as an alternative method.
Zobrazit více v PubMed
Censi R., Rascioni R., Di Martino P. Changes in the solid state of anhydrous and hydrated forms sodium naproxen under different grinding and environmental conditions: Evidence of the formation of new hydrated forms. Eur. J. Pharm. Biopharm. 2015;92:192–203. doi: 10.1016/j.ejpb.2015.03.014. PubMed DOI
Janiec W. Farmakodynamika. PZWL; Warsaw, Poland: 2022.
Kyeremateng K., Troullos E., Paredes-Diaz A. Safety of naproxen compared with placebo, ibuprofen and acetaminophen: A pooled analysis of eight multiple-dose, short-term, randomized controlled studies. Curr. Med. Res. Opin. 2019;35:1671–1676. doi: 10.1080/03007995.2019.1612338. PubMed DOI
Weintraub W.S. Safety of non-steroidal anti-inflammatory drugs. Eur. Heart J. 2017;38:3293–3295. doi: 10.1093/eurheartj/ehx533. PubMed DOI
Swiss Pharmaceutical Socied . Index Nominum: International Drug Directory. 20th ed. MedPharm; Volkach, Germany: 2011.
Moyer S. Pharmacokinetics of Naproxen Sodium. Cephalalgia. 1986;6((Suppl. 4)):77–80. doi: 10.1177/03331024860060S409. PubMed DOI
Zejca A., Gorczyca M. Chemia Leków. PZWL; Warsaw, Poland: 2004.
Sevelius H., Runkel R., Segre E., Bloomfield S.S. Bioavilablity of naproxen sodium and its relationship to clinical analgesic effects. Br. J. Clin. Pharmacol. 1980;10:259–263. doi: 10.1111/j.1365-2125.1980.tb01753.x. PubMed DOI PMC
Zając M., Jelińska A. Ocena Jakości Substancji i Produktów Leczniczych. Karola Marcinkowskiego w Poznaniu; Poznań, Poland: 2010. Wydawnictwo Naukowe Uniwersytetu Medycznego im.
Polish Pharmaceutical Society . Polish Pharmacopoeia. 11th ed. Polish Pharmaceutical Society; Warsaw, Poland: 2017.
European Directorate for the Quality of Medicines & HealthCare . European Pharmacopoeia. 10th ed. EDQM; Strasbourg, France: 2021.
ICH . ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology, Q2(R1) ICH; Geneva, Switzerland: 2005.
Holzgrabe U. Nuclear Magnetic Resonance Spectroscopy|Identification of Counterfeit Drugs and Herbal Medicine. In: Worsfold P., Poole C., Townshend A., Miró M., editors. Encyclopedia of Analytical Science. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2019. pp. 182–185.
Parys W., Pyka-Pająk A. TLC-densitometry for determination of omeprazole in simple and combined pharmaceutical preparations. Pharmaceuticals. 2022;15:1016. doi: 10.3390/ph15081016. PubMed DOI PMC
Zapata F., López-Fernández A., Ortega-Ojeda F., Quintanilla G., García-Ruiz C. Introducing ATR-FTIR spectroscopy through analysis of acetaminophen drugs: Practical lessons for interdisciplinary and progressive learning for undergraduate students. J. Chem. Educ. 2021;98:2675–2686. doi: 10.1021/acs.jchemed.0c01231. PubMed DOI PMC
Jurásek B., Bartunek V., Huber Š., Fagan P., Vladimír Setnicka V., Králík F., Dehaen W., Svozil D., Kuchar M. Can X-ray powder diffraction be a suitable forensic method for illicit drug identification? Front. Chem. 2020;8:499. doi: 10.3389/fchem.2020.00499. PubMed DOI PMC
Amin M.O., Al-Hetlani E., Lednev I.K. Detection and identification of drug traces in latent fingermarks using Raman spectroscopy. Sci. Rep. 2022;12:3136. doi: 10.1038/s41598-022-07168-6. PubMed DOI PMC
Ramos P. Application of thermal analysis to evaluate pharmaceutical preparations containing theophylline. Pharmaceuticals. 2022;15:1268. doi: 10.3390/ph15101268. PubMed DOI PMC
Song J.S., Sohn Y.T. Crystal forms of naproxen. Arch. Pharm. Res. 2011;34:87–90. doi: 10.1007/s12272-011-0110-7. PubMed DOI
Guo W., Li C., Du P., Wang Y., Zhao S., Wang J., Yang C. Thermal properties of drug polymorphs: A case study with felod pine form I and form IV. J. Saudi Chem. Soc. 2020;24:474–483. doi: 10.1016/j.jscs.2020.04.003. DOI
Ramos P., Broncel M. Influence of storage conditions on the stability of gum arabic and tragacanth. Molecules. 2022;27:1510. doi: 10.3390/molecules27051510. PubMed DOI PMC
Sovizi M.R. Thermal behavior of drugs: Investigation on decomposition kinetic of naproxen and celecoxib. J. Therm. Anal. Calorim. 2010;102:285–289. doi: 10.1007/s10973-009-0668-1. DOI
Pitucha M., Ramos P., Wojtunik-Kulesza K., Głogowska A., Stefańska J., Kowalczuk D., Drózd M., Augustynowicz-Kopeć E. Thermal analysis, antimicrobial and antioxidant studies of thiosemicarbazone derivatives. J. Therm. Anal. Calorim. 2023;148:4223–4234. doi: 10.1007/s10973-023-12029-z. DOI
Lopes M.S., Catelani T.A., Nascimento A.L.C.S., Garcia J.S., Trevisan M.G. Ketoconazole: Compatibility with pharmaceutical excipients using DSC and TG techniques. J. Therm. Anal. Calorim. 2020;141:1371–1378. doi: 10.1007/s10973-019-09137-0. DOI
Kolisnyk T., Vashchenko O., Ruban O., Fil N., Slipchenko G. Assessing compatibility of excipients selected for a sustained release formulation of biberry leaf extract. Braz. J. Pharm. Sci. 2022;58:e19753. doi: 10.1590/s2175-97902022e19753. DOI
Ramos P. Thermal compatibility assessment of selected excipients used in the oral anti-cancer formulation containing busulfan. Farmacia. 2022;70:417–424. doi: 10.31925/farmacia.2022.3.6. DOI
Rojek B., Wesołowski M. A combined differential scanning calorimetry and thermogravimetry approach for the effective assessment of drug substance-excipient compatibility. J. Therm. Anal. Calorim. 2023;148:845–858. doi: 10.1007/s10973-022-11849-9. DOI
Mateescu M., Vlase G., Budiul M.M., Cernusca B.D., Vlase T. Preliminary study for preparation and characterization of medicated jelly based on ibuprofen or ambroxol. J. Therm. Anal. Calorim. 2023;148:4601–4614. doi: 10.1007/s10973-023-12052-0. DOI
Harmathy Z., Konkoly Thege I. Application of modern thermal methods in pharmaceutical analysis. Acta Pharm. Hung. 1994;64:9–15. PubMed
Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J. Therm. Anal. Calorim. 2002;68:335–357. doi: 10.1023/A:1016015113795. DOI
Monajjemzadeh F., Ghaderi F. Thermal Analysis Methods in Pharmaceutical Quality Control. J. Mol. Pharm. Org. Process Res. 2015;3:e121.
Gabbott P. Principles and Applications of Thermal Analysis. Blackwell Publishing; Oxford, UK: 2008.
Akash M.S.H., Rehman K. Essentials of Pharmaceutical Analysis. Springer; Singapore: 2020. Differential thermal analysis.
Hanwell G.R., Curtis M.D., Lonie D.E., Vandermeersch D.C., Zurek T., Hutchison E. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Neese F. The ORCA program system. WIREs Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI
Lu T., Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI
Echavarria A.P., Pagan J., Ibarz A. Kinetics of color development in glucose/Amino Acid model systems at different temperatures. Sci. Agropecu. 2016;7:15–21. doi: 10.17268/sci.agropecu.2016.01.02. DOI
Sovizi M.R., Hajimirsadeghi S.S., Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J. Hazard. Mater. 2009;168:1134–1139. doi: 10.1016/j.jhazmat.2009.02.146. PubMed DOI
Füglein E., Mende S., Jung S., Schneider T. About the Infl uence of the Particle Size on the Thermal Behavior of Inorganic Powders. Prod. Der Partik. 2008;4:97.
Zauska L., Urbanova M., Brus J., Zelenak V., Hornebecq V. Adsorption and release properties of drug delivery system naproxen-SBA-15: Effect of surface polarity, sodium/acid drug form and pH. J. Funct. Biomater. 2022;13:275. doi: 10.3390/jfb13040275. PubMed DOI PMC
Rowe R.C., Sheskey P.J., Quinn M.E. Handbook of Pharmaceutical Excipients. 6th ed. Pharmaceutical Press; London, UK: 2009.
Ramos P. Compatibility studies of selected mucolytic drugs with excipients used in solid dosage form: Thermogravimetry analysis. Farmacia. 2021;69:585–594. doi: 10.31925/farmacia.2021.3.22. DOI
Pratiwi M., Ylitervo P., Pettersson A., Prakoso T., Soerawidijaja T.H. Magnesium stearate production via direct reaction of palm stearine and magnesium hydroxide. IOP Conf. Ser. Mater. Sci. Eng. 2017;206:012026. doi: 10.1088/1757-899X/206/1/012026. DOI
Pereira M.A.V., Fonseca A.A., Silva-Junior A.A., Fernandes-Pedrosa M.F., de Moura F.V., Barbosa E.G., Gomes A.P.B., dos Santos K.S.C.R. Compatibility study between chitosan and pharmaceutical excipients used in solid dosage forms. J. Therm. Anal. Calorim. 2014;116:1091–1100. doi: 10.1007/s10973-014-3769-4. DOI
Mirakami F.S., Lang K.L., Mendes C., Cruz A.P., Carvalho Filho M.A.S., Silva M.A.S. Physico-chemical solid-state characterization of omeprazole sodium: Thermal, spectroscopic and crystallinity studies. J. Pharm. Biomed. Anal. 2009;49:72–80. doi: 10.1016/j.jpba.2008.10.005. PubMed DOI
Raijada D., Bond A.D., Larsen F.H., Cornett C., Qu H., Rantanen J. Exploring the Solid-Form Landscape of Pharmaceutical Hydrates: Transformation Pathways of the Sodium Naproxen Anhydrate-Hydrate System. Pharm. Res. 2013;30:280–289. doi: 10.1007/s11095-012-0872-8. PubMed DOI
Kuthi F.A.A., Norzali N.R.A., Badri K.H. Thermal characteristics of microcrystalline cellulose from oil palm biomass. Malays. J. Anal. Sci. 2016;20:1112–1122.
Listiohadi Y., Hourigan J.A., Sleigh R.W., Steele R.J. Thermal analysis of amorphous lactose and α-lactose monohydrate. Dairy Sci. Technol. 2009;89:43–67. doi: 10.1051/dst:2008027. DOI
Chena J., Wang J., Li R., Lu A., Li Y. Thermal and X-ray Diffraction Analysis of Lactose Polymorph. Proc. Eng. 2015;102:372–378. doi: 10.1016/j.proeng.2015.01.165. DOI
Altamimi M.J., Wolff K., Nokhodchi A., Martin G.P., Royall P.G. Variability in the α and β anomer content of commercially available lactose. Int. J. Pharm. 2019;555:237–249. doi: 10.1016/j.ijpharm.2018.10.061. PubMed DOI
López-Pablos A.L., Leyva-Porras C.C., Silva-Cázares M.B., Longoria-Rodríguez F.E., Pérez-García S.A., Vértiz-Hernández A.A., Saavedra-Leos M.Z. Preparation and Characterization of High Purity Anhydrous β-Lactose from α-Lactose Monohydrate at Mild Temperature. Int. J. Polym. Sci. 2018;2018:5069063. doi: 10.1155/2018/5069063. DOI
Al-Hada N.M., Saion E.B., Shaari A.H., Kamarudin M.A., Flaifel M.H., Ahmad S.H., Gene S.A. A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PLoS ONE. 2014;9:e103134. doi: 10.1371/journal.pone.0103134. PubMed DOI PMC
Balek V., Šubrt J., Pérez-Maqueda L.A., Beneš M., Bountseva I.M., Beckman I.N., Pérez-Rodríguez J.L. Thermal behavior of ground talc mineral. J. Min. Metall. B Metall. 2008;44:7–17. doi: 10.2298/JMMB0801007B. DOI
Jamrógiewicz M., Milewska K., Mikolaszek B. Spectroscopic Evaluation on Pseudopolymorphs of Sodium Naproxen. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;261:120018. doi: 10.1016/j.saa.2021.120018. PubMed DOI
Ilic-Stojanovic S., Nikolic V., Nikolic L., Zdravkovic A., Kapor A., Popsavin M., Petrovic S. The Improved Photostability of Naproxen in the Inclusion Complex with 2-Hydroxypropyl-β-Cyclodextrin. Hem. Ind. 2015;69:361–370. doi: 10.2298/HEMIND131128050I. DOI
Sarkar A., Sengupta K., Chatterjee S., Seal M., Faller P., Dey S.G., Dey A. Metal Binding to Aβ Peptides Inhibits Interaction with Cytochrome c: Insights from Abiological Constructs. ACS Omega. 2018;3:13994–14003. doi: 10.1021/acsomega.8b01736. PubMed DOI PMC
Pratiwi R.A., Nandiyanto A.B.D. How to read and interpret UV-VIS spectrophotometric results in determining the structure of chemical compounds. Indones. J. Educ. Res. Technol. 2022;2:1–20. doi: 10.17509/ijert.v2i1.35171. DOI