Can X-Ray Powder Diffraction Be a Suitable Forensic Method for Illicit Drug Identification?

. 2020 ; 8 () : 499. [epub] 20200623

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32656182

New psychoactive substances (NPSs) are associated with a significant number of intoxications. With the number of readily available forms of these drugs rising every year, there are even risks for the general public. Consequently, there is a high demand for methods sufficiently sensitive to detect NPSs in samples found at the crime scene. Infrared (IR) and Raman spectroscopies are commonly used for such detection, but they have limitations; for example, fluorescence in Raman can overlay the signal and when the sample is a mixture sometimes neither Raman nor IR is able to identify the compounds. Here, we investigate the potential of X-ray powder diffraction (XRPD) to analyse samples seized on the black market. A series of psychoactive substances (heroin, cocaine, mephedrone, ephylone, butylone, JWH-073, and naphyrone) was measured. Comparison of their diffraction patterns with those of the respective standards showed that XRPD was able to identify each of the substances. The same samples were analyzed using IR and Raman, which in both cases were not able to detect the compounds in all of the samples. These results suggest that XRPD could be a valuable addition to the range of forensic tools used to detect these compounds in illicit drug samples.

Zobrazit více v PubMed

Apirakkan O., Frinculescu A., Shine T., Parkin M. C., Cilibrizzi A., Frascione N., et al. . (2018). Analytical characterization of three cathinone derivatives, 4-MPD, 4F-PHP and bk-EPDP, purchased as bulk powder from online vendors. Drug Test. Anal. 10, 372–378. 10.1002/dta.2218 PubMed DOI

Cannaert A., Vasudevan L., Friscia M., Mohr A. L. A., Wille S. M. R., Stove C. P. (2018). Activity-based concept to screen biological matrices for opiates and (synthetic) opioids. Clin. Chem. 64, 1221–1229. 10.1373/clinchem.2018.289496 PubMed DOI

Ciolino L. A. (2015). Quantitation of synthetic cannabinoids in plant materials using high performance liquid chromatography with UV detection (validated method). J. Forensic Sci. 60, 1171–1181. 10.1111/1556-4029.12795 PubMed DOI

Correia R. M., Domingos E., Tosato F., dos Santos N. A., Leite J., de A., et al. (2018). Portable near infrared spectroscopy applied to abuse drugs and medicine analyses. Anal. Methods 10, 593–603. 10.1039/C7AY02998E DOI

Croft T. L., Huffines R. A., Pathak M., Subedi B. (2020). Prevalence of illicit and prescribed neuropsychiatric drugs in three communities in Kentucky using wastewater-based epidemiology and monte carlo simulation for the estimation of associated uncertainties. J. Hazard Mater. 384:121306. 10.1016/j.jhazmat.2019.121306 PubMed DOI PMC

European Monitoring Centre for Drugs and Drug Addiction (2018). European Drug Report 2018: Trends and Developments. Luxembourg. PubMed

European Monitoring Centre for Drugs and Drug Addiction and Europol (2019). European Drug Report 2019: Trends and Developments. Luxembourg.

Fabresse N., Larabi I. A., Stratton T., Mistrik R., Pfau G., Lorin de la Grandmaison G., et al. . (2019). Development of a sensitive untargeted liquid chromatography-high resolution mass spectrometry screening devoted to hair analysis through a shared MS2 spectra database: a step toward early detection of new psychoactive substances. Drug Test. Anal. 11, 697–708. 10.1002/dta.2535 PubMed DOI

Folen V. A. (1975). X-ray powder diffraction data for some drugs, excipients, and adulterants in illicit samples. J. Forensic Sci. 20:10282J. 10.1520/JFS10282J PubMed DOI

González-Mariño I., Rodríguez I., Quintana J. B., Cela R. (2013). Investigation of the transformation of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol during water chlorination by liquid chromatography-quadrupole-time-of-flight-mass spectrometry. J. Hazard Mater. 261, 628–636. 10.1016/j.jhazmat.2013.08.006 PubMed DOI

Hvozdovich J. A., Chronister C. W., Logan B. K., Goldberger B. A. (2020). Case report: synthetic cannabinoid deaths in state of florida prisoners. J. Anal. Toxicol. 44, 298–300. 10.1093/jat/bkz092 PubMed DOI

Jones L. E., Stewart A., Peters K. L., McNaul M., Speers S. J., Fletcher N. C., et al. . (2016). Infrared and Raman screening of seized novel psychoactive substances: a large scale study of <200 samples. Analyst 141, 902–909. 10.1039/C5AN02326B PubMed DOI

Jurásek B., Bartuněk V., Huber Š., Kuchar M. (2019). X-Ray powder diffraction - a non-destructive and versatile approach for the identification of new psychoactive substances. Talanta 195, 414–418. 10.1016/j.talanta.2018.11.063 PubMed DOI

Kotrlý M. (2006). Application of X-ray diffraction in forensic science, in Ninth European Powder Diffraction Conference (München: Oldenbourg Wissenschaftsverlag; ), 35–40. 10.1524/9783486992526-009 DOI

Kyriakou C., Pellegrini M., García-Algar O., Marinelli E., Zaami S. (2017). Recent trends in analytical methods to determine new psychoactive substances in hair. Curr. Neuropharmacol. 15, 663–681. 10.2174/1570159X15666161111112545 PubMed DOI PMC

Maheux C. R., Alarcon I. Q., Copeland C. R., Cameron T. S., Linden A., Grossert J. S. (2016). Identification of polymorphism in ethylone hydrochloride: synthesis and characterization. Drug Test. Anal. 8, 847–857. 10.1002/dta.1859 PubMed DOI PMC

Maryška M., Fojtíková L., Jurok R., Holubová B., Lapčík O., Kuchar M. (2018). Use of novel haptens in the production of antibodies for the detection of tryptamines. RSC Adv. 8, 16243–16250. 10.1039/C8RA02528B PubMed DOI PMC

Mastroianni N., Bleda M. J., López de Alda M., Barceló D. (2016). Occurrence of drugs of abuse in surface water from four Spanish river basins: Spatial and temporal variations and environmental risk assessment. J. Hazard Mater. 316, 134–142. 10.1016/j.jhazmat.2016.05.025 PubMed DOI

Mercieca G., Odoardi S., Cassar M., Strano Rossi S. (2018). Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC-MS. J. Pharm. Biomed. Anal. 149, 494–501. 10.1016/j.jpba.2017.11.024 PubMed DOI

Metternich S., Zörntlein S., Schönberger T., Huhn C. (2019). Ion mobility spectrometry as a fast screening tool for synthetic cannabinoids to uncover drug trafficking in jail via herbal mixtures, paper, food, and cosmetics. Drug Test. Anal. 11, 833–846. 10.1002/dta.2565 PubMed DOI

Meyer M. R., Bergstrand M. P., Helander A., Beck O. (2016). Identification of main human urinary metabolites of the designer nitrobenzodiazepines clonazolam, meclonazepam, and nifoxipam by nano-liquid chromatography-high-resolution mass spectrometry for drug testing purposes. Anal. Bioanal. Chem. 408, 3571–3591. 10.1007/s00216-016-9439-6 PubMed DOI

Morris K. R., Schlam R. F., Cao W., Short M. S. (2000). Determination of average crystallite shape by X-ray diffraction and computational methods. J. Pharm. Sci. 89, 1432–1442. 10.1002/1520-6017(200011)89:11<1432::AID-JPS6>3.0.CO;2-X PubMed DOI

Namera A., Kawamura M., Nakamoto A., Saito T., Nagao M. (2015). Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicol. 33, 175–194. 10.1007/s11419-015-0270-0 PubMed DOI PMC

Pasin D., Cawley A., Bidny S., Fu S. (2017). Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review. Anal. Bioanal. Chem. 409, 5821–5836. 10.1007/s00216-017-0441-4 PubMed DOI

Pecharsky V., Zavalij P. (2009). Fundamentals of Powder Diffraction and Structural Characterization of Materials. 2nd Edn. Boston, MA: Springer.

Pereira L. S. A., Lisboa F. L. C., Coelho Neto J., Valladão F. N., Sena M. M. (2018). Screening method for rapid classification of psychoactive substances in illicit tablets using mid infrared spectroscopy and PLS-DA. Forensic Sci. Int. 288, 227–235. 10.1016/j.forsciint.2018.05.001 PubMed DOI

Popovic A., Morelato M., Roux C., Beavis A. (2019). Review of the most common chemometric techniques in illicit drug profiling. Forensic Sci. Int. 302:109911. 10.1016/j.forsciint.2019.109911 PubMed DOI

Rosi-Marshall E. J., Snow D., Bartelt-Hunt S. L., Paspalof A., Tank J. L. (2015). A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. J. Hazard Mater. 282, 18–25. 10.1016/j.jhazmat.2014.06.062 PubMed DOI

Salomone A., Palamar J. J., Gerace E., Di Corcia D., Vincenti M. (2017). Hair testing for drugs of abuse and new psychoactive substances in a high-risk population. J. Anal. Toxicol. 41, 376–381. 10.1093/jat/bkx020 PubMed DOI PMC

Šícho M., Stork C., Mazzolari A., de Bruyn Kops C., Pedretti A., Testa B., et al. . (2019). FAME 3: predicting the sites of metabolism in synthetic compounds and natural products for phase 1 and phase 2 metabolic enzymes. J. Chem. Inf. Model. 59, 3400–3412. 10.1021/acs.jcim.9b00376 PubMed DOI

Stewart S. P., Bell S. E. J., Fletcher N. C., Bouazzaoui S., Ho Y. C., Speers S. J., et al. . (2012). Raman spectroscopy for forensic examination of β-ketophenethylamine “legal highs”: reference and seized samples of cathinone derivatives. Anal. Chim. Acta 711, 1–6. 10.1016/j.aca.2011.10.018 PubMed DOI

Thatcher P. J., Briner G. P. (1986). The application of X-Ray powder diffraction to forensic science. Powder Diffr. 1, 320–324. 10.1017/S.0885715600011994 DOI

UNODC - United Nations Office on Drugs Crime (2013). The Challenge of New Psychoactive Substances. Vienna. Available online at: https://www.unodc.org/documents/scientific/NPS_Report.pdf.

Vikingsson S., Josefsson M., Gréen H. (2015). Identification of AKB-48 and 5F-AKB-48 metabolites in authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J. Anal. Toxicol. 39, 426–435. 10.1093/jat/bkv045 PubMed DOI

Vikingsson S., Wohlfarth A., Andersson M., Gréen H., Roman M., Josefsson M., et al. . (2017). Identifying metabolites of meclonazepam by high-resolution mass spectrometry using human liver microsomes, hepatocytes, a mouse model, and authentic urine samples. AAPS J. 19, 736–742. 10.1208/s12248-016-0040-x PubMed DOI

Yu B., Cao C., Li P., Mao M., Xie Q., Yang L. (2018). Sensitive and simple determination of zwitterionic morphine in human urine based on liquid-liquid micro-extraction coupled with surface-enhanced Raman spectroscopy. Talanta 186, 427–432. 10.1016/j.talanta.2018.04.094 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...