Hyaluronan-Arginine Interactions-An Ultrasound and ITC Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FCH-S-20-6307
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32932626
PubMed Central
PMC7570013
DOI
10.3390/polym12092069
PII: polym12092069
Knihovny.cz E-zdroje
- Klíčová slova
- arginine, high-resolution ultrasound spectroscopy, hyaluronan, interaction, isothermal titration calorimetry,
- Publikační typ
- časopisecké články MeSH
High-resolution ultrasound spectroscopy and isothermal titration calorimetry were used to characterize interactions between hyaluronan and arginine oligomers. The molecular weight of arginine oligomer plays an important role in interactions with hyaluronan. Interactions were observable for arginine oligomers with eight monomer units and longer chains. The effect of the ionic strength and molecular weight of hyaluronan on interactions was tested. In an environment with increased ionic strength, the length of the arginine oligomer was crucial. Generally, sufficiently high ionic strength suppresses interactions between hyaluronan and arginine oligomers, which demonstrated interactions in water. From the point of view of the molecular weight of hyaluronan, the transition between the rod conformation and the random coil conformation appeared to be important.
Zobrazit více v PubMed
Meyer K., Palmer W.J. The Polysaccharide of the Vitreous Humor. J. Biol. Chem. 1934;107:629–634.
Laurent T.C., Fraser J.R.E. Hyaluronan. FASEB J. 1992;6:2397–2404. doi: 10.1096/fasebj.6.7.1563592. PubMed DOI
Laurent T.C., Laurent U.B., Fraser J.R. Functions of Hyaluronan. Ann. Rheum. Dis. 1995;54:429–432. doi: 10.1136/ard.54.5.429. PubMed DOI PMC
Laurent T.C. Biochemistry of Hyaluronan. Acta Otolaryngol. 1987;104(Suppl. 442):7–24. doi: 10.3109/00016488709102833. PubMed DOI
Girish K.S., Kemparaju K. The Magic Glue Hyaluronan and Its Eraser Hyaluronidase: A Biological Overview. Life Sci. 2007;80:1921–1943. doi: 10.1016/j.lfs.2007.02.037. PubMed DOI
Steinbuchel A., Hofrichter M. Biopolymers. Wiley-VCH Verlag GmbH; Hoboken, NJ, USA: 2003. pp. 379–390.
Toole B.P. Hyaluronan and Its Binding Proteins, the Hyaladherins. Curr. Opin. Cell Biol. 1990;2:839–844. doi: 10.1016/0955-0674(90)90081-O. PubMed DOI
Ponta H., Sherman L., Herrlich P.A. CD44: From Adhesion Molecules to Signalling Regulators. Nat. Rev. Mol. Cell Biol. 2003;4:33–45. doi: 10.1038/nrm1004. PubMed DOI
Leite M.L., da Cunha N.B., Costa F.F. Antimicrobial Peptides, Nanotechnology, and Natural Metabolites as Novel Approaches for Cancer Treatment. Pharmacol. Ther. 2018;183:160–176. doi: 10.1016/j.pharmthera.2017.10.010. PubMed DOI
Almond A. Hyaluronan. Cell. Mol. Life Sci. 2007;64:1591–1596. doi: 10.1007/s00018-007-7032-z. PubMed DOI PMC
Chytil M., Trojan M., Kovalenko A. Study on Mutual Interactions and Electronic Structures of Hyaluronan with Lysine, 6-Aminocaproic Acid and Arginine. Carbohydr. Polym. 2016;142:8–15. doi: 10.1016/j.carbpol.2016.01.035. PubMed DOI
Karousou E., Misra S., Ghatak S., Dobra K., Götte M., Vigetti D., Passi A., Karamanos N.K., Skandalis S.S. Roles and Targeting of the HAS/Hyaluronan/CD44 Molecular System in Cancer. Matrix Biol. 2017;59:3–22. doi: 10.1016/j.matbio.2016.10.001. PubMed DOI
Vuorio J., Vattulainen I., Martinez-Seara H. Atomistic Fingerprint of Hyaluronan–CD44 Binding. PLoS Comput. Biol. 2017;13:e1005663. doi: 10.1371/journal.pcbi.1005663. PubMed DOI PMC
Nagae M., Yamaguchi Y. Three-Dimensional Structural Aspects of Protein–Polysaccharide Interactions. Int. J. Mol. Sci. 2014;15:3768–3783. doi: 10.3390/ijms15033768. PubMed DOI PMC
Rao N.V., Yoon H.Y., Han H.S., Ko H., Son S., Lee M., Lee H., Jo D.-G., Kang Y.M., Park J.H. Recent Developments in Hyaluronic Acid-Based Nanomedicine for Targeted Cancer Treatment. Expert Opin. Drug Deliv. 2016;13:239–252. doi: 10.1517/17425247.2016.1112374. PubMed DOI
Banerji S., Wright A.J., Noble M., Mahoney D.J., Campbell I.D., Day A.J., Jackson D.G. Structures of the Cd44–Hyaluronan Complex Provide Insight into a Fundamental Carbohydrate-Protein Interaction. Nat. Struct. Mol. Biol. 2007;14:234–239. doi: 10.1038/nsmb1201. PubMed DOI
Plazinski W., Knys-Dzieciuch A. Interactions between CD44 Protein and Hyaluronan: Insights from the Computational Study. Mol. BioSyst. 2012;8:543–547. doi: 10.1039/C2MB05399C. PubMed DOI
Bhattacharya D.S., Svechkarev D., Souchek J.J., Hill T.K., Taylor M.A., Natarajan A., Mohs A.M. Impact of Structurally Modifying Hyaluronic Acid on CD44 Interaction. J. Mater. Chem. B. 2017;5:8183–8192. doi: 10.1039/C7TB01895A. PubMed DOI PMC
Day A.J., Prestwich G.D. Hyaluronan-Binding Proteins: Tying Up the Giant. J. Biol. Chem. 2002;277:4585–4588. doi: 10.1074/jbc.R100036200. PubMed DOI
Ye F., Xie Y., Jensen H., Larsen S.W., Yaghmur A., Larsen C., Østergaard J. Interaction of Amino Acid and Dipeptide β-Naphthylamide Derivatives with Hyaluronic Acid and Human Serum Albumin Studied by Capillary Electrophoresis Frontal Analysis. Chromatographia. 2013;76:49–57. doi: 10.1007/s10337-012-2369-3. DOI
Oyarzun-Ampuero F.A., Goycoolea F.M., Torres D., Alonso M.J. A New Drug Nanocarrier Consisting of Polyarginine and Hyaluronic Acid. Eur. J. Pharm. Biopharm. 2011;79:54–57. doi: 10.1016/j.ejpb.2011.04.008. PubMed DOI
Kim E.-J., Shim G., Kim K., Kwon I.C., Oh Y.-K., Shim C.-K. Hyaluronic Acid Complexed to Biodegradable Poly L-Arginine for Targeted Delivery of SiRNAs. J. Gene Med. 2009;11:791–803. doi: 10.1002/jgm.1352. PubMed DOI
Balbino T.A., Correa G.S.C., Favaro M.T.P., Toledo M.A.S., Azzoni A.R., de la Torre L.G. Physicochemical and in Vitro Evaluation of Cationic Liposome, Hyaluronic Acid and Plasmid DNA as Pseudo-Ternary Complexes for Gene Delivery. Colloids Surf. Physicochem. Eng. Asp. 2015;484:262–270. doi: 10.1016/j.colsurfa.2015.08.005. DOI
Mero A., Campisi M. Hyaluronic Acid Bioconjugates for the Delivery of Bioactive Molecules. Polymers. 2014;6:346–369. doi: 10.3390/polym6020346. DOI
Turgeon S.L., Schmitt C., Sanchez C. Protein–Polysaccharide Complexes and Coacervates. Curr. Opin. Colloid Interface Sci. 2007;12:166–178. doi: 10.1016/j.cocis.2007.07.007. DOI
Lenormand H., Deschrevel B., Vincent J.-C. Chain Length Effects on Electrostatic Interactions between Hyaluronan Fragments and Albumin. Carbohydr. Polym. 2010;82:887–894. doi: 10.1016/j.carbpol.2010.06.011. DOI
Lenormand H., Deschrevel B., Tranchepain F., Vincent J.-C. Electrostatic Interactions between Hyaluronan and Proteins at PH 4: How Do They Modulate Hyaluronidase Activity. Biopolymers. 2008;89:1088–1103. doi: 10.1002/bip.21061. PubMed DOI
Lenormand H., Deschrevel B., Vincent J.-C. PH Effects on the Hyaluronan Hydrolysis Catalysed by Hyaluronidase in the Presence of Proteins: Part I. Dual Aspect of the PH-Dependence. Matrix Biol. 2010;29:330–337. doi: 10.1016/j.matbio.2009.12.007. PubMed DOI
Collins M.N., Birkinshaw C. Hyaluronic Acid Solutions-A Processing Method for Efficient Chemical Modification. J. Appl. Polym. Sci. 2013;130:145–152. doi: 10.1002/app.39145. DOI
Freyer M.W., Lewis E.A. Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions. Methods Cell Biol. 2008;84:79–113. doi: 10.1016/S0091-679X(07)84004-0. PubMed DOI
Liu J., Cowman M.K. Thermal Analysis of Semi-Dilute Hyaluronan Solutions. J. Therm. Anal. Calorim. 2000;59:547–557. doi: 10.1023/A:1010114213475. DOI
Cleland R.L. Enthalpy of Mixing Glycosaminoglycans with Aqueous NaCl. Biopolymers. 1979;18:2673–2681. doi: 10.1002/bip.1979.360181104. DOI
Benegas J.C., Di Blas A., Paoletti S., Cesàro A. Some Aspects of the Enthalpy of Dilution of Biological Polyelectrolytes. J. Therm. Anal. 1992;38:2613–2620. doi: 10.1007/BF01979737. DOI
Buckin V.A. High-Resolution Ultrasonic Spectroscopy. J. Sensors Sens. Syst. 2018;7:207–217. doi: 10.5194/jsss-7-207-2018. DOI
Lehmann L., Buckin V. Determination of the Heat Stability Profiles of Concentrated Milk and Milk Ingredients Using High Resolution Ultrasonic Spectroscopy. J. Dairy Sci. 2005;88:3121–3129. doi: 10.3168/jds.S0022-0302(05)72994-5. PubMed DOI
Graeme L.C. In: Biomolecular and Bioanalytical Techniques. Vasudevan R., editor. Wiley; Hoboken, NJ, USA: 2019. 576p
Le V.H., Buscaglia R., Chaires J.B., Lewis E.A. Modeling Complex Equilibria in Isothermal Titration Calorimetry Experiments: Thermodynamic Parameters Estimation for a Three-Binding-Site Model. Anal. Biochem. 2013;434:233–241. doi: 10.1016/j.ab.2012.11.030. PubMed DOI PMC
Bhowmik D., Das S., Hossain M., Haq L., Suresh Kumar G. Biophysical Characterization of the Strong Stabilization of the RNA Triplex Poly(U)•poly(A)*poly(U) by 9-O-(ω-Amino) Alkyl Ether Berberine Analogs. PLoS ONE. 2012;7:e37939. doi: 10.1371/journal.pone.0037939. PubMed DOI PMC
Buckin V.A., Kankiya B.I., Sarvazyan A.P., Uedaira H. Acoustical Investigation of Poly(DA).Poly(DT), Poly[d(A-T)].Poly[d(A-T)], Poly(A). Poly(U) and DNA Hydration in Dilute Aqueous Solutions. Nucleic Acids Res. 1989;17:4189–4203. doi: 10.1093/nar/17.11.4189. PubMed DOI PMC
Merzel F., Smith J.C. Is the First Hydration Shell of Lysozyme of Higher Density than Bulk Water? Proc. Natl. Acad. Sci. USA. 2002;99:5378–5383. doi: 10.1073/pnas.082335099. PubMed DOI PMC
Chalikian T.V., Sarvazyan A.P., Breslauer K.J. Hydration and Partial Compressibility of Biological Compounds. Biophys. Chem. 1994;51:89–109. doi: 10.1016/0301-4622(94)85007-0. PubMed DOI
Galema S.A., Hoeiland H. Stereochemical Aspects of Hydration of Carbohydrates in Aqueous Solutions. 3. Density and Ultrasound Measurements. J. Phys. Chem. 1991;95:5321–5326. doi: 10.1021/j100166a073. DOI
Zana R. Studies of Aqueous Solutions of Polyelectrolytes by Means of Ultrasonic Methods. J. Macromol. Sci. Part C Polym. Rev. 1975;12:165–189. doi: 10.1080/15321797508076107. DOI
Isemura T., Goto S. Studies of the Hydration and the Structure of Water and Their Roles in Protein Structure. II. The Hydration of Electrolytes by Ultrasonic Interferometry and Its Temperature Dependence. Bull. Chem. Soc. Jpn. 1964;37:1690–1693. doi: 10.1246/bcsj.37.1690. DOI
Cabani S., Gianni P., Mollica V., Lepori L. Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution. J. Solut. Chem. 1981;10:563–595. doi: 10.1007/BF00646936. DOI
Lafont V., Armstrong A.A., Ohtaka H., Kiso Y., Mario Amzel L., Freire E. Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization. Chem. Biol. Drug Des. 2007;69:413–422. doi: 10.1111/j.1747-0285.2007.00519.x. PubMed DOI
Kawasaki Y., Chufan E.E., Lafont V., Hidaka K., Kiso Y., Mario Amzel L., Freire E. How Much Binding Affinity Can Be Gained by Filling a Cavity? Chem. Biol. Drug Des. 2010;75:143–151. doi: 10.1111/j.1747-0285.2009.00921.x. PubMed DOI PMC
Mertins O., Dimova R. Binding of Chitosan to Phospholipid Vesicles Studied with Isothermal Titration Calorimetry. Langmuir. 2011;27:5506–5515. doi: 10.1021/la200553t. PubMed DOI
Vondrášek J., Mason P.E., Heyda J., Collins K.D., Jungwirth P. The Molecular Origin of Like-Charge Arginine−Arginine Pairing in Water. J. Phys. Chem. B. 2009;113:9041–9045. doi: 10.1021/jp902377q. PubMed DOI
Lesley J. Hyaluronan Binding by Cell Surface CD44. J. Biol. Chem. 2000;275:26967–26975. doi: 10.1074/jbc.M002527200. PubMed DOI
Simulescu V., Mondek J., Kalina M., Pekař M. Kinetics of Long-Term Degradation of Different Molar Mass Hyaluronan Solutions Studied by SEC-MALLS. Polym. Degrad. Stab. 2015;111:257–262. doi: 10.1016/j.polymdegradstab.2014.12.005. DOI
Mondek J., Kalina M., Simulescu V., Pekař M. Thermal Degradation of High Molar Mass Hyaluronan in Solution and in Powder; Comparison with BSA. Polym. Degrad. Stab. 2015;120:107–113. doi: 10.1016/j.polymdegradstab.2015.06.012. DOI
Simulescu V., Kalina M., Mondek J., Pekař M. Long-term degradation study of hyaluronic acid in aqueous solutions without protection against microorganisms. Carbohydr. Polym. 2016;137:664–668. doi: 10.1016/j.carbpol.2015.10.101. PubMed DOI
Scott J.E., Cummings C., Brass A., Chen Y. Secondary and Tertiary Structures of Hyaluronan in Aqueous Solution, Investigated by Rotary Shadowing-Electron Microscopy and Computer Simulation. Hyaluronan Is a Very Efficient Network-Forming Polymer. Biochem. J. 1991;274:699–705. doi: 10.1042/bj2740699. PubMed DOI PMC