Hyaluronan-Arginine Interactions-An Ultrasound and ITC Study

. 2020 Sep 12 ; 12 (9) : . [epub] 20200912

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32932626

Grantová podpora
FCH-S-20-6307 Ministerstvo Školství, Mládeže a Tělovýchovy

High-resolution ultrasound spectroscopy and isothermal titration calorimetry were used to characterize interactions between hyaluronan and arginine oligomers. The molecular weight of arginine oligomer plays an important role in interactions with hyaluronan. Interactions were observable for arginine oligomers with eight monomer units and longer chains. The effect of the ionic strength and molecular weight of hyaluronan on interactions was tested. In an environment with increased ionic strength, the length of the arginine oligomer was crucial. Generally, sufficiently high ionic strength suppresses interactions between hyaluronan and arginine oligomers, which demonstrated interactions in water. From the point of view of the molecular weight of hyaluronan, the transition between the rod conformation and the random coil conformation appeared to be important.

Zobrazit více v PubMed

Meyer K., Palmer W.J. The Polysaccharide of the Vitreous Humor. J. Biol. Chem. 1934;107:629–634.

Laurent T.C., Fraser J.R.E. Hyaluronan. FASEB J. 1992;6:2397–2404. doi: 10.1096/fasebj.6.7.1563592. PubMed DOI

Laurent T.C., Laurent U.B., Fraser J.R. Functions of Hyaluronan. Ann. Rheum. Dis. 1995;54:429–432. doi: 10.1136/ard.54.5.429. PubMed DOI PMC

Laurent T.C. Biochemistry of Hyaluronan. Acta Otolaryngol. 1987;104(Suppl. 442):7–24. doi: 10.3109/00016488709102833. PubMed DOI

Girish K.S., Kemparaju K. The Magic Glue Hyaluronan and Its Eraser Hyaluronidase: A Biological Overview. Life Sci. 2007;80:1921–1943. doi: 10.1016/j.lfs.2007.02.037. PubMed DOI

Steinbuchel A., Hofrichter M. Biopolymers. Wiley-VCH Verlag GmbH; Hoboken, NJ, USA: 2003. pp. 379–390.

Toole B.P. Hyaluronan and Its Binding Proteins, the Hyaladherins. Curr. Opin. Cell Biol. 1990;2:839–844. doi: 10.1016/0955-0674(90)90081-O. PubMed DOI

Ponta H., Sherman L., Herrlich P.A. CD44: From Adhesion Molecules to Signalling Regulators. Nat. Rev. Mol. Cell Biol. 2003;4:33–45. doi: 10.1038/nrm1004. PubMed DOI

Leite M.L., da Cunha N.B., Costa F.F. Antimicrobial Peptides, Nanotechnology, and Natural Metabolites as Novel Approaches for Cancer Treatment. Pharmacol. Ther. 2018;183:160–176. doi: 10.1016/j.pharmthera.2017.10.010. PubMed DOI

Almond A. Hyaluronan. Cell. Mol. Life Sci. 2007;64:1591–1596. doi: 10.1007/s00018-007-7032-z. PubMed DOI PMC

Chytil M., Trojan M., Kovalenko A. Study on Mutual Interactions and Electronic Structures of Hyaluronan with Lysine, 6-Aminocaproic Acid and Arginine. Carbohydr. Polym. 2016;142:8–15. doi: 10.1016/j.carbpol.2016.01.035. PubMed DOI

Karousou E., Misra S., Ghatak S., Dobra K., Götte M., Vigetti D., Passi A., Karamanos N.K., Skandalis S.S. Roles and Targeting of the HAS/Hyaluronan/CD44 Molecular System in Cancer. Matrix Biol. 2017;59:3–22. doi: 10.1016/j.matbio.2016.10.001. PubMed DOI

Vuorio J., Vattulainen I., Martinez-Seara H. Atomistic Fingerprint of Hyaluronan–CD44 Binding. PLoS Comput. Biol. 2017;13:e1005663. doi: 10.1371/journal.pcbi.1005663. PubMed DOI PMC

Nagae M., Yamaguchi Y. Three-Dimensional Structural Aspects of Protein–Polysaccharide Interactions. Int. J. Mol. Sci. 2014;15:3768–3783. doi: 10.3390/ijms15033768. PubMed DOI PMC

Rao N.V., Yoon H.Y., Han H.S., Ko H., Son S., Lee M., Lee H., Jo D.-G., Kang Y.M., Park J.H. Recent Developments in Hyaluronic Acid-Based Nanomedicine for Targeted Cancer Treatment. Expert Opin. Drug Deliv. 2016;13:239–252. doi: 10.1517/17425247.2016.1112374. PubMed DOI

Banerji S., Wright A.J., Noble M., Mahoney D.J., Campbell I.D., Day A.J., Jackson D.G. Structures of the Cd44–Hyaluronan Complex Provide Insight into a Fundamental Carbohydrate-Protein Interaction. Nat. Struct. Mol. Biol. 2007;14:234–239. doi: 10.1038/nsmb1201. PubMed DOI

Plazinski W., Knys-Dzieciuch A. Interactions between CD44 Protein and Hyaluronan: Insights from the Computational Study. Mol. BioSyst. 2012;8:543–547. doi: 10.1039/C2MB05399C. PubMed DOI

Bhattacharya D.S., Svechkarev D., Souchek J.J., Hill T.K., Taylor M.A., Natarajan A., Mohs A.M. Impact of Structurally Modifying Hyaluronic Acid on CD44 Interaction. J. Mater. Chem. B. 2017;5:8183–8192. doi: 10.1039/C7TB01895A. PubMed DOI PMC

Day A.J., Prestwich G.D. Hyaluronan-Binding Proteins: Tying Up the Giant. J. Biol. Chem. 2002;277:4585–4588. doi: 10.1074/jbc.R100036200. PubMed DOI

Ye F., Xie Y., Jensen H., Larsen S.W., Yaghmur A., Larsen C., Østergaard J. Interaction of Amino Acid and Dipeptide β-Naphthylamide Derivatives with Hyaluronic Acid and Human Serum Albumin Studied by Capillary Electrophoresis Frontal Analysis. Chromatographia. 2013;76:49–57. doi: 10.1007/s10337-012-2369-3. DOI

Oyarzun-Ampuero F.A., Goycoolea F.M., Torres D., Alonso M.J. A New Drug Nanocarrier Consisting of Polyarginine and Hyaluronic Acid. Eur. J. Pharm. Biopharm. 2011;79:54–57. doi: 10.1016/j.ejpb.2011.04.008. PubMed DOI

Kim E.-J., Shim G., Kim K., Kwon I.C., Oh Y.-K., Shim C.-K. Hyaluronic Acid Complexed to Biodegradable Poly L-Arginine for Targeted Delivery of SiRNAs. J. Gene Med. 2009;11:791–803. doi: 10.1002/jgm.1352. PubMed DOI

Balbino T.A., Correa G.S.C., Favaro M.T.P., Toledo M.A.S., Azzoni A.R., de la Torre L.G. Physicochemical and in Vitro Evaluation of Cationic Liposome, Hyaluronic Acid and Plasmid DNA as Pseudo-Ternary Complexes for Gene Delivery. Colloids Surf. Physicochem. Eng. Asp. 2015;484:262–270. doi: 10.1016/j.colsurfa.2015.08.005. DOI

Mero A., Campisi M. Hyaluronic Acid Bioconjugates for the Delivery of Bioactive Molecules. Polymers. 2014;6:346–369. doi: 10.3390/polym6020346. DOI

Turgeon S.L., Schmitt C., Sanchez C. Protein–Polysaccharide Complexes and Coacervates. Curr. Opin. Colloid Interface Sci. 2007;12:166–178. doi: 10.1016/j.cocis.2007.07.007. DOI

Lenormand H., Deschrevel B., Vincent J.-C. Chain Length Effects on Electrostatic Interactions between Hyaluronan Fragments and Albumin. Carbohydr. Polym. 2010;82:887–894. doi: 10.1016/j.carbpol.2010.06.011. DOI

Lenormand H., Deschrevel B., Tranchepain F., Vincent J.-C. Electrostatic Interactions between Hyaluronan and Proteins at PH 4: How Do They Modulate Hyaluronidase Activity. Biopolymers. 2008;89:1088–1103. doi: 10.1002/bip.21061. PubMed DOI

Lenormand H., Deschrevel B., Vincent J.-C. PH Effects on the Hyaluronan Hydrolysis Catalysed by Hyaluronidase in the Presence of Proteins: Part I. Dual Aspect of the PH-Dependence. Matrix Biol. 2010;29:330–337. doi: 10.1016/j.matbio.2009.12.007. PubMed DOI

Collins M.N., Birkinshaw C. Hyaluronic Acid Solutions-A Processing Method for Efficient Chemical Modification. J. Appl. Polym. Sci. 2013;130:145–152. doi: 10.1002/app.39145. DOI

Freyer M.W., Lewis E.A. Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions. Methods Cell Biol. 2008;84:79–113. doi: 10.1016/S0091-679X(07)84004-0. PubMed DOI

Liu J., Cowman M.K. Thermal Analysis of Semi-Dilute Hyaluronan Solutions. J. Therm. Anal. Calorim. 2000;59:547–557. doi: 10.1023/A:1010114213475. DOI

Cleland R.L. Enthalpy of Mixing Glycosaminoglycans with Aqueous NaCl. Biopolymers. 1979;18:2673–2681. doi: 10.1002/bip.1979.360181104. DOI

Benegas J.C., Di Blas A., Paoletti S., Cesàro A. Some Aspects of the Enthalpy of Dilution of Biological Polyelectrolytes. J. Therm. Anal. 1992;38:2613–2620. doi: 10.1007/BF01979737. DOI

Buckin V.A. High-Resolution Ultrasonic Spectroscopy. J. Sensors Sens. Syst. 2018;7:207–217. doi: 10.5194/jsss-7-207-2018. DOI

Lehmann L., Buckin V. Determination of the Heat Stability Profiles of Concentrated Milk and Milk Ingredients Using High Resolution Ultrasonic Spectroscopy. J. Dairy Sci. 2005;88:3121–3129. doi: 10.3168/jds.S0022-0302(05)72994-5. PubMed DOI

Graeme L.C. In: Biomolecular and Bioanalytical Techniques. Vasudevan R., editor. Wiley; Hoboken, NJ, USA: 2019. 576p

Le V.H., Buscaglia R., Chaires J.B., Lewis E.A. Modeling Complex Equilibria in Isothermal Titration Calorimetry Experiments: Thermodynamic Parameters Estimation for a Three-Binding-Site Model. Anal. Biochem. 2013;434:233–241. doi: 10.1016/j.ab.2012.11.030. PubMed DOI PMC

Bhowmik D., Das S., Hossain M., Haq L., Suresh Kumar G. Biophysical Characterization of the Strong Stabilization of the RNA Triplex Poly(U)•poly(A)*poly(U) by 9-O-(ω-Amino) Alkyl Ether Berberine Analogs. PLoS ONE. 2012;7:e37939. doi: 10.1371/journal.pone.0037939. PubMed DOI PMC

Buckin V.A., Kankiya B.I., Sarvazyan A.P., Uedaira H. Acoustical Investigation of Poly(DA).Poly(DT), Poly[d(A-T)].Poly[d(A-T)], Poly(A). Poly(U) and DNA Hydration in Dilute Aqueous Solutions. Nucleic Acids Res. 1989;17:4189–4203. doi: 10.1093/nar/17.11.4189. PubMed DOI PMC

Merzel F., Smith J.C. Is the First Hydration Shell of Lysozyme of Higher Density than Bulk Water? Proc. Natl. Acad. Sci. USA. 2002;99:5378–5383. doi: 10.1073/pnas.082335099. PubMed DOI PMC

Chalikian T.V., Sarvazyan A.P., Breslauer K.J. Hydration and Partial Compressibility of Biological Compounds. Biophys. Chem. 1994;51:89–109. doi: 10.1016/0301-4622(94)85007-0. PubMed DOI

Galema S.A., Hoeiland H. Stereochemical Aspects of Hydration of Carbohydrates in Aqueous Solutions. 3. Density and Ultrasound Measurements. J. Phys. Chem. 1991;95:5321–5326. doi: 10.1021/j100166a073. DOI

Zana R. Studies of Aqueous Solutions of Polyelectrolytes by Means of Ultrasonic Methods. J. Macromol. Sci. Part C Polym. Rev. 1975;12:165–189. doi: 10.1080/15321797508076107. DOI

Isemura T., Goto S. Studies of the Hydration and the Structure of Water and Their Roles in Protein Structure. II. The Hydration of Electrolytes by Ultrasonic Interferometry and Its Temperature Dependence. Bull. Chem. Soc. Jpn. 1964;37:1690–1693. doi: 10.1246/bcsj.37.1690. DOI

Cabani S., Gianni P., Mollica V., Lepori L. Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution. J. Solut. Chem. 1981;10:563–595. doi: 10.1007/BF00646936. DOI

Lafont V., Armstrong A.A., Ohtaka H., Kiso Y., Mario Amzel L., Freire E. Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization. Chem. Biol. Drug Des. 2007;69:413–422. doi: 10.1111/j.1747-0285.2007.00519.x. PubMed DOI

Kawasaki Y., Chufan E.E., Lafont V., Hidaka K., Kiso Y., Mario Amzel L., Freire E. How Much Binding Affinity Can Be Gained by Filling a Cavity? Chem. Biol. Drug Des. 2010;75:143–151. doi: 10.1111/j.1747-0285.2009.00921.x. PubMed DOI PMC

Mertins O., Dimova R. Binding of Chitosan to Phospholipid Vesicles Studied with Isothermal Titration Calorimetry. Langmuir. 2011;27:5506–5515. doi: 10.1021/la200553t. PubMed DOI

Vondrášek J., Mason P.E., Heyda J., Collins K.D., Jungwirth P. The Molecular Origin of Like-Charge Arginine−Arginine Pairing in Water. J. Phys. Chem. B. 2009;113:9041–9045. doi: 10.1021/jp902377q. PubMed DOI

Lesley J. Hyaluronan Binding by Cell Surface CD44. J. Biol. Chem. 2000;275:26967–26975. doi: 10.1074/jbc.M002527200. PubMed DOI

Simulescu V., Mondek J., Kalina M., Pekař M. Kinetics of Long-Term Degradation of Different Molar Mass Hyaluronan Solutions Studied by SEC-MALLS. Polym. Degrad. Stab. 2015;111:257–262. doi: 10.1016/j.polymdegradstab.2014.12.005. DOI

Mondek J., Kalina M., Simulescu V., Pekař M. Thermal Degradation of High Molar Mass Hyaluronan in Solution and in Powder; Comparison with BSA. Polym. Degrad. Stab. 2015;120:107–113. doi: 10.1016/j.polymdegradstab.2015.06.012. DOI

Simulescu V., Kalina M., Mondek J., Pekař M. Long-term degradation study of hyaluronic acid in aqueous solutions without protection against microorganisms. Carbohydr. Polym. 2016;137:664–668. doi: 10.1016/j.carbpol.2015.10.101. PubMed DOI

Scott J.E., Cummings C., Brass A., Chen Y. Secondary and Tertiary Structures of Hyaluronan in Aqueous Solution, Investigated by Rotary Shadowing-Electron Microscopy and Computer Simulation. Hyaluronan Is a Very Efficient Network-Forming Polymer. Biochem. J. 1991;274:699–705. doi: 10.1042/bj2740699. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...