Computational Study of Complex Formation between Hyaluronan Polymers and Polyarginine Peptides at Various Ratios
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37773978
PubMed Central
PMC10569091
DOI
10.1021/acs.langmuir.3c01318
Knihovny.cz E-zdroje
- MeSH
- arginin MeSH
- kyselina hyaluronová * chemie MeSH
- lidé MeSH
- makromolekulární látky MeSH
- peptidy chemie MeSH
- polymery * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arginin MeSH
- kyselina hyaluronová * MeSH
- makromolekulární látky MeSH
- peptidy MeSH
- polyarginine MeSH Prohlížeč
- polymery * MeSH
Hyaluronic acid, a naturally occurring carbohydrate biopolymer in human tissues, finds wide application in cosmetics, medicine, and material science. Its anionic properties play a crucial role in its interaction with positively charged macromolecules and ions. Among these macromolecules, positively charged arginine molecules or polyarginine peptides demonstrate potential in drug delivery when complexed with hyaluronan. This study aimed to compare and elucidate the results of both experimental and computational investigations on the interactions between hyaluronic acid polymers and polyarginine peptides. Experimental findings revealed that by varying the length of polyarginine peptides and the molar ratio, it is possible to modulate the size, solubility, and stability of hyaluronan-arginine particles. To further explore these interactions, molecular dynamics simulations were conducted to model the complexes formed between hyaluronic acid polymers and arginine peptides. The simulations are considered in different molar ratios and lengths of polyarginine peptides. By analysis of the data, we successfully determined the shape and size of the resulting complexes. Additionally, we identified the primary driving forces behind complex formation and explained the observed variations in peptide interactions with hyaluronan.
Zobrazit více v PubMed
Cowman M. K.; Lee H. G.; Schwertfeger K. L.; McCarthy J. B.; Turley E. A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015, 6 (JUN), 1–8. 10.3389/fimmu.2015.00261. PubMed DOI PMC
Sionkowska A.; Gadomska M.; Musiał K.; Piatek J. Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. Molecules 2020, 25 (18), 4035.10.3390/molecules25184035. PubMed DOI PMC
Bhattacharya D.; Svechkarev D.; Souchek J. J.; Hill T. K.; Taylor M. A.; Natarajan A.; Mohs A. M. Impact of Structurally Modifying Hyaluronic Acid on CD44 Interaction. J. Mater. Chem. B 2017, 5 (41), 8183–8192. 10.1039/C7TB01895A. PubMed DOI PMC
Toole B. P. Hyaluronan in Morphogenesis. Semin. Cell Dev. Biol. 2001, 12 (2), 79–87. 10.1006/scdb.2000.0244. PubMed DOI
Yang J.; Cheng F.; Yu H.; Wang J.; Guo Z.; Stephanopoulos G. Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers. Biomacromolecules 2017, 18 (4), 1064–1073. 10.1021/acs.biomac.6b01239. PubMed DOI
Labie H.; Perro A.; Lapeyre V.; Goudeau B.; Catargi B.; Auzély R.; Ravaine V. Sealing Hyaluronic Acid Microgels with Oppositely-Charged Polypeptides: A Simple Strategy for Packaging Hydrophilic Drugs with on-Demand Release. J. Colloid Interface Sci. 2019, 535, 16–27. 10.1016/j.jcis.2018.09.048. PubMed DOI
Oyarzun-Ampuero F. A.; Goycoolea F. M.; Torres D.; Alonso M. J. A New Drug Nanocarrier Consisting of Polyarginine and Hyaluronic Acid. Eur. J. Pharm. Biopharm. 2011, 79 (1), 54–57. 10.1016/j.ejpb.2011.04.008. PubMed DOI
Tripodo G.; Trapani A.; Torre M. L.; Giammona G.; Trapani G.; Mandracchia D. Hyaluronic Acid and Its Derivatives in Drug Delivery and Imaging: Recent Advances and Challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400–416. 10.1016/j.ejpb.2015.03.032. PubMed DOI
Yoo J.; Rejinold N. S.; Lee D. Y.; Noh I.; Koh W. G.; Jon S.; Kim Y. C. CD44-Mediated Methotrexate Delivery by Hyaluronan-Coated Nanoparticles Composed of a Branched Cell-Penetrating Peptide. ACS Biomater. Sci. Eng. 2020, 6 (1), 494–504. 10.1021/acsbiomaterials.9b01724. PubMed DOI
Kalafatovic D.; Giralt E. Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017, 22 (11), 1929.10.3390/molecules22111929. PubMed DOI PMC
Rao N. V.; Rho J. G.; Um W.; Ek P. K.; Nguyen V. Q.; Oh B. H.; Kim W.; Park J. H. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020, 12 (10), 1–18. 10.3390/pharmaceutics12100931. PubMed DOI PMC
Vasvani S.; Kulkarni P.; Rawtani D. Hyaluronic Acid: A Review on Its Biology, Aspects of Drug Delivery, Route of Administrations and a Special Emphasis on Its Approved Marketed Products and Recent Clinical Studies. Int. J. Biol. Macromol. 2020, 151, 1012–1029. 10.1016/j.ijbiomac.2019.11.066. PubMed DOI
Chytil M.; Trojan M.; Kovalenko A. Study on Mutual Interactions and Electronic Structures of Hyaluronan with Lysine, 6-Aminocaproic Acid and Arginine. Carbohydr. Polym. 2016, 142, 8–15. 10.1016/j.carbpol.2016.01.035. PubMed DOI
Jugl A.; Pekař M. Hyaluronan-Arginine Interactions-an Ultrasound and ITC Study. Polymers - Basel. 2020, 12 (9), 2069.10.3390/polym12092069. PubMed DOI PMC
Krieger E.; Koraimann G.; Vriend G. Increasing the Precision of Comparative Models with YASARA NOVA—a Self-Parameterizing Force Field. Proteins Struct. Funct. Bioinforma. 2002, 47 (3), 393–402. 10.1002/prot.10104. PubMed DOI
Land H.; Humble M. S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. Methods Mol. Biol. 2018, 1685, 43–67. 10.1007/978-1-4939-7366-8_4. PubMed DOI
Kirschner K.; Yongye A.; Tschampel S.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29 (4), 622–655. 10.1002/jcc.20820. PubMed DOI PMC
Mobley D. L.; Chodera J. D.; Dill K. A. On the Use of Orientational Restraints and Symmetry Corrections in Alchemical Free Energy Calculations. J. Chem. Phys. 2006, 125 (8), 84902.10.1063/1.2221683. PubMed DOI PMC
Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30 (13), 2157–2164. 10.1002/jcc.21224. PubMed DOI
Kutzner C.; Páll S.; Fechner M.; Esztermann A.; de Groot B. L.; Grubmüller H. More Bang for Your Buck: Improved Use of GPU Nodes for GROMACS 2018. J. Comput. Chem. 2019, 40 (27), 2418–2431. 10.1002/jcc.26011. PubMed DOI
Duan Y.; Wu C.; Chowdhury S.; Lee M. C.; Xiong G.; Zhang W.; Yang R.; Cieplak P.; Luo R.; Lee T.; Caldwell J.; Wang J.; Kollman P. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 2003, 24 (16), 1999–2012. 10.1002/jcc.10349. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI
Nosé S.; Klein M. L. Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys. 1983, 50 (5), 1055–1076. 10.1080/00268978300102851. DOI
Berendsen H. J. C. In Computer Simulation in Materials Science; Meyer M., Pontikis V., Eds.; Springer Netherlands: Dordrecht, 1991; pp 139–155.
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577–8593. 10.1063/1.470117. DOI
Kumari R.; Kumar R.; Lynn A. G-Mmpbsa -A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54 (7), 1951–1962. 10.1021/ci500020m. PubMed DOI
Marianiová D.; Lapčík L. Electrical Conductivity Measurements of Hyaluronic Acid and Collagen. Colloid Polym. Sci. 1993, 271, 143–147. 10.1007/BF00651816. DOI
Amin M.; Küpper J. Variations in Proteins Dielectric Constants. ChemistryOpen. 2020, 9 (6), 691–694. 10.1002/open.202000108. PubMed DOI PMC
Haxaire K.; Braccini I.; Milas M.; Rinaudo M.; Pérez S. Conformational Behavior of Hyaluronan in Relation to Its Physical Properties as Probed by Molecular Modeling. Glycobiology 2000, 10 (6), 587–594. 10.1093/glycob/10.6.587. PubMed DOI
Vondrásek J.; Mason P. E.; Heyda J.; Collins K. D.; Jungwirth P. The Molecular Origin of Like-charge Arginine-arginine Pairing in Water. journal of physical chemistry. B 2009, 113 (27), 9041–9045. 10.1021/jp902377q. PubMed DOI
Davis A. P. Biomimetic Carbohydrate Recognition. Chem. Soc. Rev. 2020, 49 (9), 2531–2545. 10.1039/C9CS00391F. PubMed DOI
Asensio J. L.; Ardá A.; Canada F. J.; Jiménez-Barbero J. Carbohydrate-Aromatic Interactions. Acc. Chem. Res. 2013, 46 (4), 946–954. 10.1021/ar300024d. PubMed DOI