Computational Study of Complex Formation between Hyaluronan Polymers and Polyarginine Peptides at Various Ratios

. 2023 Oct 10 ; 39 (40) : 14212-14222. [epub] 20230929

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37773978

Hyaluronic acid, a naturally occurring carbohydrate biopolymer in human tissues, finds wide application in cosmetics, medicine, and material science. Its anionic properties play a crucial role in its interaction with positively charged macromolecules and ions. Among these macromolecules, positively charged arginine molecules or polyarginine peptides demonstrate potential in drug delivery when complexed with hyaluronan. This study aimed to compare and elucidate the results of both experimental and computational investigations on the interactions between hyaluronic acid polymers and polyarginine peptides. Experimental findings revealed that by varying the length of polyarginine peptides and the molar ratio, it is possible to modulate the size, solubility, and stability of hyaluronan-arginine particles. To further explore these interactions, molecular dynamics simulations were conducted to model the complexes formed between hyaluronic acid polymers and arginine peptides. The simulations are considered in different molar ratios and lengths of polyarginine peptides. By analysis of the data, we successfully determined the shape and size of the resulting complexes. Additionally, we identified the primary driving forces behind complex formation and explained the observed variations in peptide interactions with hyaluronan.

Zobrazit více v PubMed

Cowman M. K.; Lee H. G.; Schwertfeger K. L.; McCarthy J. B.; Turley E. A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015, 6 (JUN), 1–8. 10.3389/fimmu.2015.00261. PubMed DOI PMC

Sionkowska A.; Gadomska M.; Musiał K.; Piatek J. Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. Molecules 2020, 25 (18), 4035.10.3390/molecules25184035. PubMed DOI PMC

Bhattacharya D.; Svechkarev D.; Souchek J. J.; Hill T. K.; Taylor M. A.; Natarajan A.; Mohs A. M. Impact of Structurally Modifying Hyaluronic Acid on CD44 Interaction. J. Mater. Chem. B 2017, 5 (41), 8183–8192. 10.1039/C7TB01895A. PubMed DOI PMC

Toole B. P. Hyaluronan in Morphogenesis. Semin. Cell Dev. Biol. 2001, 12 (2), 79–87. 10.1006/scdb.2000.0244. PubMed DOI

Yang J.; Cheng F.; Yu H.; Wang J.; Guo Z.; Stephanopoulos G. Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers. Biomacromolecules 2017, 18 (4), 1064–1073. 10.1021/acs.biomac.6b01239. PubMed DOI

Labie H.; Perro A.; Lapeyre V.; Goudeau B.; Catargi B.; Auzély R.; Ravaine V. Sealing Hyaluronic Acid Microgels with Oppositely-Charged Polypeptides: A Simple Strategy for Packaging Hydrophilic Drugs with on-Demand Release. J. Colloid Interface Sci. 2019, 535, 16–27. 10.1016/j.jcis.2018.09.048. PubMed DOI

Oyarzun-Ampuero F. A.; Goycoolea F. M.; Torres D.; Alonso M. J. A New Drug Nanocarrier Consisting of Polyarginine and Hyaluronic Acid. Eur. J. Pharm. Biopharm. 2011, 79 (1), 54–57. 10.1016/j.ejpb.2011.04.008. PubMed DOI

Tripodo G.; Trapani A.; Torre M. L.; Giammona G.; Trapani G.; Mandracchia D. Hyaluronic Acid and Its Derivatives in Drug Delivery and Imaging: Recent Advances and Challenges. Eur. J. Pharm. Biopharm. 2015, 97, 400–416. 10.1016/j.ejpb.2015.03.032. PubMed DOI

Yoo J.; Rejinold N. S.; Lee D. Y.; Noh I.; Koh W. G.; Jon S.; Kim Y. C. CD44-Mediated Methotrexate Delivery by Hyaluronan-Coated Nanoparticles Composed of a Branched Cell-Penetrating Peptide. ACS Biomater. Sci. Eng. 2020, 6 (1), 494–504. 10.1021/acsbiomaterials.9b01724. PubMed DOI

Kalafatovic D.; Giralt E. Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017, 22 (11), 1929.10.3390/molecules22111929. PubMed DOI PMC

Rao N. V.; Rho J. G.; Um W.; Ek P. K.; Nguyen V. Q.; Oh B. H.; Kim W.; Park J. H. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020, 12 (10), 1–18. 10.3390/pharmaceutics12100931. PubMed DOI PMC

Vasvani S.; Kulkarni P.; Rawtani D. Hyaluronic Acid: A Review on Its Biology, Aspects of Drug Delivery, Route of Administrations and a Special Emphasis on Its Approved Marketed Products and Recent Clinical Studies. Int. J. Biol. Macromol. 2020, 151, 1012–1029. 10.1016/j.ijbiomac.2019.11.066. PubMed DOI

Chytil M.; Trojan M.; Kovalenko A. Study on Mutual Interactions and Electronic Structures of Hyaluronan with Lysine, 6-Aminocaproic Acid and Arginine. Carbohydr. Polym. 2016, 142, 8–15. 10.1016/j.carbpol.2016.01.035. PubMed DOI

Jugl A.; Pekař M. Hyaluronan-Arginine Interactions-an Ultrasound and ITC Study. Polymers - Basel. 2020, 12 (9), 2069.10.3390/polym12092069. PubMed DOI PMC

Krieger E.; Koraimann G.; Vriend G. Increasing the Precision of Comparative Models with YASARA NOVA—a Self-Parameterizing Force Field. Proteins Struct. Funct. Bioinforma. 2002, 47 (3), 393–402. 10.1002/prot.10104. PubMed DOI

Land H.; Humble M. S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. Methods Mol. Biol. 2018, 1685, 43–67. 10.1007/978-1-4939-7366-8_4. PubMed DOI

Kirschner K.; Yongye A.; Tschampel S.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29 (4), 622–655. 10.1002/jcc.20820. PubMed DOI PMC

Mobley D. L.; Chodera J. D.; Dill K. A. On the Use of Orientational Restraints and Symmetry Corrections in Alchemical Free Energy Calculations. J. Chem. Phys. 2006, 125 (8), 84902.10.1063/1.2221683. PubMed DOI PMC

Martínez L.; Andrade R.; Birgin E. G.; Martínez J. M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30 (13), 2157–2164. 10.1002/jcc.21224. PubMed DOI

Kutzner C.; Páll S.; Fechner M.; Esztermann A.; de Groot B. L.; Grubmüller H. More Bang for Your Buck: Improved Use of GPU Nodes for GROMACS 2018. J. Comput. Chem. 2019, 40 (27), 2418–2431. 10.1002/jcc.26011. PubMed DOI

Duan Y.; Wu C.; Chowdhury S.; Lee M. C.; Xiong G.; Zhang W.; Yang R.; Cieplak P.; Luo R.; Lee T.; Caldwell J.; Wang J.; Kollman P. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 2003, 24 (16), 1999–2012. 10.1002/jcc.10349. PubMed DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI

Nosé S.; Klein M. L. Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys. 1983, 50 (5), 1055–1076. 10.1080/00268978300102851. DOI

Berendsen H. J. C. In Computer Simulation in Materials Science; Meyer M., Pontikis V., Eds.; Springer Netherlands: Dordrecht, 1991; pp 139–155.

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577–8593. 10.1063/1.470117. DOI

Kumari R.; Kumar R.; Lynn A. G-Mmpbsa -A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54 (7), 1951–1962. 10.1021/ci500020m. PubMed DOI

Marianiová D.; Lapčík L. Electrical Conductivity Measurements of Hyaluronic Acid and Collagen. Colloid Polym. Sci. 1993, 271, 143–147. 10.1007/BF00651816. DOI

Amin M.; Küpper J. Variations in Proteins Dielectric Constants. ChemistryOpen. 2020, 9 (6), 691–694. 10.1002/open.202000108. PubMed DOI PMC

Haxaire K.; Braccini I.; Milas M.; Rinaudo M.; Pérez S. Conformational Behavior of Hyaluronan in Relation to Its Physical Properties as Probed by Molecular Modeling. Glycobiology 2000, 10 (6), 587–594. 10.1093/glycob/10.6.587. PubMed DOI

Vondrásek J.; Mason P. E.; Heyda J.; Collins K. D.; Jungwirth P. The Molecular Origin of Like-charge Arginine-arginine Pairing in Water. journal of physical chemistry. B 2009, 113 (27), 9041–9045. 10.1021/jp902377q. PubMed DOI

Davis A. P. Biomimetic Carbohydrate Recognition. Chem. Soc. Rev. 2020, 49 (9), 2531–2545. 10.1039/C9CS00391F. PubMed DOI

Asensio J. L.; Ardá A.; Canada F. J.; Jiménez-Barbero J. Carbohydrate-Aromatic Interactions. Acc. Chem. Res. 2013, 46 (4), 946–954. 10.1021/ar300024d. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...