Neutrophils in Extravascular Body Fluids: Cytological-Energy Analysis Enables Rapid, Reliable and Inexpensive Detection of Purulent Inflammation and Tissue Damage
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA-KZ-2021-1-2
Krajská Zdravotní
PROGRES Q40/10
Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic
PubMed
35207447
PubMed Central
PMC8877237
DOI
10.3390/life12020160
PII: life12020160
Knihovny.cz E-zdroje
- Klíčová slova
- abdominal effusion, aspartate aminotransferase, cerebrospinal fluid, coefficient of energy balance, neutrophils, pleural effusion, purulent inflammation, synovial fluid,
- Publikační typ
- časopisecké články MeSH
The simultaneous cytological and metabolic investigation of various extravascular body fluids (EBFs) provides clinically relevant information about the type and intensity of the immune response in particular organ systems. The oxidative burst of professional phagocytes with the concomitant production of reactive oxygen species consumes a large amount of oxygen and is the cause of switch to the development of anaerobic metabolism. We assessed the relationships between percentages of neutrophils, aerobic and anaerobic metabolism, and tissue damage via the determination of aspartate aminotransferase catalytic activities (AST) in cerebrospinal fluid (CSF), pleural effusions (PE), abdominal effusions (AE), and synovial fluids (SF). EBFs with 0.0-20.0% neutrophils: 83.0% aerobic and 1.3% strongly anaerobic cases with median of AST = 13.8 IU/L in CSF; 68.0% aerobic and 9.0% strongly anaerobic cases with median of AST = 20.4 IU/L in PE; 77.5% aerobic and 10.5% strongly anaerobic cases with median of AST = 18.0 IU/L in AE; 64.1% aerobic and 7.7% strongly anaerobic cases with median of AST = 13.8 IU/L in SF. EBFs with 80.0-100.0% neutrophils: 4.2% aerobic and 73.7% strongly anaerobic cases with median of AST = 19.2 IU/L in CSF; 7.4% aerobic and 77.3% strongly anaerobic cases with median of AST = 145.2 IU/L in PE; 11.8% aerobic and 73.7% strongly anaerobic cases with median of AST = 61.8 IU/L in AE; 25.5% aerobic and 38.2% strongly anaerobic cases with median of AST = 37.2 IU/L in SF. The significant presence of neutrophils, concomitant strong anaerobic metabolism, and elevated AST in various EBFs are reliable signs of damaging purulent inflammation.
Department of Orthopaedics Regional Hospital 360 01 Karlovy Vary Czech Republic
Department of Thoracic Surgery Masaryk Hospital 401 13 Usti nad Labem Czech Republic
Zobrazit více v PubMed
Felgenhauer K. Laboratory Diagnosis of Neurological Diseases. In: Thomas L., editor. Clinical Laboratory Diagnostics. Use and Assessment of Clinical Laboratory Results. TH-Books Verlagsgessellschaft; Frankfurt, Germany: 1998.
Light R.W. Pleural effusion. N. Engl. J. Med. 2002;346:1971–1977. doi: 10.1056/NEJMcp010731. PubMed DOI
Gopi A., Madhavan S.M., Sharma S.K., Sahn S.A. Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest. 2007;131:880–889. doi: 10.1378/chest.06-2063. PubMed DOI
Porcel J.M., Light R.W. Diagnostic approach to pleural effusion in adults. Am. Fam. Physician. 2006;73:1211–1220. PubMed
Logan S.A., MacMahon E. Viral meningitis. Br. Med. J. 2008;336:36–40. doi: 10.1136/bmj.39409.673657.AE. PubMed DOI PMC
Beer R., Pfausler B., Schmutzhard E. Infectious intracranial complications in the neuro-ICU patient population. Curr. Opin. Crit. Care. 2010;16:117–122. doi: 10.1097/MCC.0b013e328338cb5f. PubMed DOI
Hooper C., Lee Y.C.G., Maskell N. Investigation of a unilateral pleural effusion in adults: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65:ii4–ii17. doi: 10.1136/thx.2010.136978. PubMed DOI
Huy N.T., Thao N.T., Diep D.T., Kikuchi M., Zamora J., Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: A systemic review and meta-analysis. Crit. Care. 2010;14:R240. doi: 10.1186/cc9395. PubMed DOI PMC
Prasad K., Sahu J.K. Cerebrospinal fluid lactate: Is it a reliable and valid marker to distinguish between acute bacterial meningitis and aseptic meningitis? Crit. Care. 2011;15:104. doi: 10.1186/cc9396. PubMed DOI PMC
Viallon A., Desseigne N., Marjollet O., Birynczyk A., Belin M., Guyomarch S., Borg J., Pozetto B., Bertrand J.C., Zeni F. Meningitis in adult patients with a negative direct cerebrospinal fluid examination: Value of cytochemical markers for differential diagnosis. Crit. Care. 2011;15:R136. doi: 10.1186/cc10254. PubMed DOI PMC
Girdhar A., Shujaat A., Bajwa A. Management of infectious processes of the pleural space: A review. Pulm. Med. 2012;2012:816502. doi: 10.1155/2012/816502. PubMed DOI PMC
Karkhanis V.S., Joshi J.M. Pleural effusion: Diagnosis, treatment, and management. Open Access Emerg. Med. 2012;4:31–52. doi: 10.2147/OAEM.S29942. PubMed DOI PMC
Cohen L.A., Light R.W. Tuberculous pleural effusion. Turk. Thorac. J. 2015;16:1–9. doi: 10.5152/ttd.2014.001. PubMed DOI PMC
Dixit R., Agarwal K.C., Gokhroo A., Patil C.B., Meena M., Shah N.S., Arora P. Diagnosis, and management options in malignant pleural effusions. Lung India. 1017;34:160–166. doi: 10.4103/0970-2113.201305. PubMed DOI PMC
Kelbich P., Hejčl A., Selke Krulichová I., Procházka J., Hanuljaková E., Peruthová J., Koudelková M., Sameš M., Krejsek J. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin. Chem. Lab. Med. 2014;52:1009–1017. doi: 10.1515/cclm-2013-0953. PubMed DOI
Kelbich P., Hejčl A., Staněk I., Svítilová E., Hanuljaková E., Sameš M. Principles of the cytological-energy analysis of the extravascular body fluids. Biochem. Mol. Biol. J. 2017;3:6.
Karlson P. Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. 10th ed. Georg Thieme Verlag; Stuttgart, Germany: 1977.
Zhang Q., Wang J., Yadav D.K., Bai X., Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front. Immunol. 2021;12:702580. doi: 10.3389/fimmu.2021.702580. PubMed DOI PMC
Zuo J., Tang J., Lu M., Zhou Z., Li Y., Tian H., Liu E., Gao B., Liu T., Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front. Immunol. 2021;12:779787. doi: 10.3389/fimmu.2021.779787. PubMed DOI PMC
Turvey S.E., Broide D.H. Innate immunity. J. Allergy Clin. Immunol. 2010;125:S24–S32. doi: 10.1016/j.jaci.2009.07.016. PubMed DOI PMC
Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.h.C., Nauseef W.M. Myeloperoxidase: A front-line defender against phagocyted microorganisms. J. Leukoc. Biol. 2013;93:185–198. doi: 10.1189/jlb.0712349. PubMed DOI PMC
Lee W.L., Harrison R.E., Grinstein S. Phagocytosis by neutrophils. Microbes Infect. 2003;5:1299–1306. doi: 10.1016/j.micinf.2003.09.014. PubMed DOI
Filias A., Theodorou G.L., Mouzopoulou S., Varvarigou A.A., Mantagos S., Karakantza M. Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatrics. 2011;11:29. doi: 10.1186/1471-2431-11-29. PubMed DOI PMC
Kruger P., Saffarzadeh M., Weber A.N.R., Rieber N., Radsak M., von Bernuth H., Benarafa C.H., Roos D., Skokowa J., Hartl D. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathog. 2015;11:e1004651. doi: 10.1371/journal.ppat.1004651. PubMed DOI PMC
O’Neill L.A.J., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70. PubMed DOI PMC
Rosales C., Demaurex N., Lowell C.A., Uribe-Querol E. Neutrophils: Their Role in Innate and Adaptive Immunity. J. Immunol. Res. 2016;2016:1469780. doi: 10.1155/2016/1469780. PubMed DOI PMC
Nguyen G.T., Green E.R., Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell. Infect. Microbiol. 2017;7:373. doi: 10.3389/fcimb.2017.00373. PubMed DOI PMC
Selders G.S., Fetz A.E., Radic M.Z., Bowlin G.L. An overview of the role of neutrophils in innate immunity, inflammation and host-biometarial integration. Regen. Biometarials. 2017;4:55–68. doi: 10.1093/rb/rbw041. PubMed DOI PMC
Teng T.-S., Ji A.-L. Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J. Immunol. Res. 2017;2017:9671604. doi: 10.1155/2017/9671604. PubMed DOI PMC
Thomas D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017;192:88–96. doi: 10.1016/j.imlet.2017.08.016. PubMed DOI
Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC
Rosales C. Neutrophil: A Cell with Many Roles in Inflammation of Several Cell Types? Front. Physiol. 2018;9:113. doi: 10.3389/fphys.2018.00113. PubMed DOI PMC
Alam A., Thelin E.P., Tajsic T., Khan D.Z., Khellaf A., Patani R., Helmy A. Cellular infiltration in traumatic brain injury. J. Neuroinflammation. 2020;17:328. doi: 10.1186/s12974-020-02005-x. PubMed DOI PMC
Kelbich P., Slavík S., Jasanská J., Adam P., Hanuljaková E., Jermanová K., Repková E., Šimečková M., Procházková J., Gajdošová R., et al. Evaluations of the energy relations in the CSF compartment by investigation of selected parameters of the glucose metabolism in the CSF. Klin. Biochem. Metab. 1998;6:213–225.
Kelbich P., Malý V., Matuchová I., Čegan M., Staněk I., Král J., Karpjuk O., Moudrá-Wünschová I., Kubalík J., Hanuljaková E., et al. Cytological-energy analysis of pleural effusions. Ann. Clin. Biochem. 2019;56:630–637. doi: 10.1177/0004563219845415. PubMed DOI
Matuchova I., Kelbich P., Kubalik J., Hanuljakova E., Stanek I., Maly V., Karpjuk O., Krejsek J. Cytological-energy analysis of pleural effusions with predominance of neutrophils. Ther. Adv. Respir. Dis. 2020;14:1–10. doi: 10.1177/1753466620935772. PubMed DOI PMC
Kelbich P., Hejčl A., Krejsek J., Radovnický T., Matuchová I., Lodin J., Špička J., Sameš M., Procházka J., Hanuljaková E., et al. Development of the Cerebrospinal Fluid in Early Stage after Hemorrhage in the Central Nervous System. Life. 2021;11:300. doi: 10.3390/life11040300. PubMed DOI PMC
Wilson E., Olcott M.C., Bell R.M., Merrill A.H., Jr., Lambeth J.D. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. J. Biol. Chem. 1986;261:12616–12623. doi: 10.1016/S0021-9258(18)67135-2. PubMed DOI
Dahlgren C., Karlsson A. Respiratory burst in human neutrophils. J. Immunol. Methods. 1999;232:3–14. doi: 10.1016/S0022-1759(99)00146-5. PubMed DOI
Segal A.W. How Neutrophils Kill Microbes. Annu. Rev. Immunol. 2005;23:197–223. doi: 10.1146/annurev.immunol.23.021704.115653. PubMed DOI PMC
Nathan C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006;63:173–182. doi: 10.1038/nri1785. PubMed DOI
Koedel U., Frankenberg T., Kirschnek S., Obermaier B., Häcker H., Paul R., Häcker G. Apoptosis Is Essential for Neutrophil Functional Shutdown and Determines Tissue Damage in Experimental Pneumococcal Meningitis. PLoS Pathog. 2009;5:e1000461. doi: 10.1371/journal.ppat.1000461. PubMed DOI PMC
Kelbich P., Radovnický T., Selke-Krulichová I., Lodin J., Matuchová I., Sameš M., Procházka J., Krejsek J., Hanuljaková E., Hejčl A. Can aspartate aminotransferase in the cerebrospinal fluid be a reliable predicitve parameter? Brain Sci. 2020;10:698. doi: 10.3390/brainsci10100698. PubMed DOI PMC
Curi R., Newsholme P., Pithon-Curi T.C., Pires-de-Melo M., Garcia C., Homem-de-Bittencourt P.I., Jr., Gulmarães A.R.P. Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils. Braz. J. Med. Biol. Res. 1999;32:15–21. doi: 10.1590/S0100-879X1999000100002. PubMed DOI
Borregaard N., Herlin T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Investig. 1982;70:550–557. doi: 10.1172/JCI110647. PubMed DOI PMC
Response to commentary: Reactive synovitis of the knee joint and COVID-19 vaccination