Neutrophils in Extravascular Body Fluids: Cytological-Energy Analysis Enables Rapid, Reliable and Inexpensive Detection of Purulent Inflammation and Tissue Damage

. 2022 Jan 21 ; 12 (2) : . [epub] 20220121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35207447

Grantová podpora
IGA-KZ-2021-1-2 Krajská Zdravotní
PROGRES Q40/10 Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic

The simultaneous cytological and metabolic investigation of various extravascular body fluids (EBFs) provides clinically relevant information about the type and intensity of the immune response in particular organ systems. The oxidative burst of professional phagocytes with the concomitant production of reactive oxygen species consumes a large amount of oxygen and is the cause of switch to the development of anaerobic metabolism. We assessed the relationships between percentages of neutrophils, aerobic and anaerobic metabolism, and tissue damage via the determination of aspartate aminotransferase catalytic activities (AST) in cerebrospinal fluid (CSF), pleural effusions (PE), abdominal effusions (AE), and synovial fluids (SF). EBFs with 0.0-20.0% neutrophils: 83.0% aerobic and 1.3% strongly anaerobic cases with median of AST = 13.8 IU/L in CSF; 68.0% aerobic and 9.0% strongly anaerobic cases with median of AST = 20.4 IU/L in PE; 77.5% aerobic and 10.5% strongly anaerobic cases with median of AST = 18.0 IU/L in AE; 64.1% aerobic and 7.7% strongly anaerobic cases with median of AST = 13.8 IU/L in SF. EBFs with 80.0-100.0% neutrophils: 4.2% aerobic and 73.7% strongly anaerobic cases with median of AST = 19.2 IU/L in CSF; 7.4% aerobic and 77.3% strongly anaerobic cases with median of AST = 145.2 IU/L in PE; 11.8% aerobic and 73.7% strongly anaerobic cases with median of AST = 61.8 IU/L in AE; 25.5% aerobic and 38.2% strongly anaerobic cases with median of AST = 37.2 IU/L in SF. The significant presence of neutrophils, concomitant strong anaerobic metabolism, and elevated AST in various EBFs are reliable signs of damaging purulent inflammation.

Zobrazit více v PubMed

Felgenhauer K. Laboratory Diagnosis of Neurological Diseases. In: Thomas L., editor. Clinical Laboratory Diagnostics. Use and Assessment of Clinical Laboratory Results. TH-Books Verlagsgessellschaft; Frankfurt, Germany: 1998.

Light R.W. Pleural effusion. N. Engl. J. Med. 2002;346:1971–1977. doi: 10.1056/NEJMcp010731. PubMed DOI

Gopi A., Madhavan S.M., Sharma S.K., Sahn S.A. Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest. 2007;131:880–889. doi: 10.1378/chest.06-2063. PubMed DOI

Porcel J.M., Light R.W. Diagnostic approach to pleural effusion in adults. Am. Fam. Physician. 2006;73:1211–1220. PubMed

Logan S.A., MacMahon E. Viral meningitis. Br. Med. J. 2008;336:36–40. doi: 10.1136/bmj.39409.673657.AE. PubMed DOI PMC

Beer R., Pfausler B., Schmutzhard E. Infectious intracranial complications in the neuro-ICU patient population. Curr. Opin. Crit. Care. 2010;16:117–122. doi: 10.1097/MCC.0b013e328338cb5f. PubMed DOI

Hooper C., Lee Y.C.G., Maskell N. Investigation of a unilateral pleural effusion in adults: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65:ii4–ii17. doi: 10.1136/thx.2010.136978. PubMed DOI

Huy N.T., Thao N.T., Diep D.T., Kikuchi M., Zamora J., Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: A systemic review and meta-analysis. Crit. Care. 2010;14:R240. doi: 10.1186/cc9395. PubMed DOI PMC

Prasad K., Sahu J.K. Cerebrospinal fluid lactate: Is it a reliable and valid marker to distinguish between acute bacterial meningitis and aseptic meningitis? Crit. Care. 2011;15:104. doi: 10.1186/cc9396. PubMed DOI PMC

Viallon A., Desseigne N., Marjollet O., Birynczyk A., Belin M., Guyomarch S., Borg J., Pozetto B., Bertrand J.C., Zeni F. Meningitis in adult patients with a negative direct cerebrospinal fluid examination: Value of cytochemical markers for differential diagnosis. Crit. Care. 2011;15:R136. doi: 10.1186/cc10254. PubMed DOI PMC

Girdhar A., Shujaat A., Bajwa A. Management of infectious processes of the pleural space: A review. Pulm. Med. 2012;2012:816502. doi: 10.1155/2012/816502. PubMed DOI PMC

Karkhanis V.S., Joshi J.M. Pleural effusion: Diagnosis, treatment, and management. Open Access Emerg. Med. 2012;4:31–52. doi: 10.2147/OAEM.S29942. PubMed DOI PMC

Cohen L.A., Light R.W. Tuberculous pleural effusion. Turk. Thorac. J. 2015;16:1–9. doi: 10.5152/ttd.2014.001. PubMed DOI PMC

Dixit R., Agarwal K.C., Gokhroo A., Patil C.B., Meena M., Shah N.S., Arora P. Diagnosis, and management options in malignant pleural effusions. Lung India. 1017;34:160–166. doi: 10.4103/0970-2113.201305. PubMed DOI PMC

Kelbich P., Hejčl A., Selke Krulichová I., Procházka J., Hanuljaková E., Peruthová J., Koudelková M., Sameš M., Krejsek J. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin. Chem. Lab. Med. 2014;52:1009–1017. doi: 10.1515/cclm-2013-0953. PubMed DOI

Kelbich P., Hejčl A., Staněk I., Svítilová E., Hanuljaková E., Sameš M. Principles of the cytological-energy analysis of the extravascular body fluids. Biochem. Mol. Biol. J. 2017;3:6.

Karlson P. Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. 10th ed. Georg Thieme Verlag; Stuttgart, Germany: 1977.

Zhang Q., Wang J., Yadav D.K., Bai X., Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front. Immunol. 2021;12:702580. doi: 10.3389/fimmu.2021.702580. PubMed DOI PMC

Zuo J., Tang J., Lu M., Zhou Z., Li Y., Tian H., Liu E., Gao B., Liu T., Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front. Immunol. 2021;12:779787. doi: 10.3389/fimmu.2021.779787. PubMed DOI PMC

Turvey S.E., Broide D.H. Innate immunity. J. Allergy Clin. Immunol. 2010;125:S24–S32. doi: 10.1016/j.jaci.2009.07.016. PubMed DOI PMC

Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.h.C., Nauseef W.M. Myeloperoxidase: A front-line defender against phagocyted microorganisms. J. Leukoc. Biol. 2013;93:185–198. doi: 10.1189/jlb.0712349. PubMed DOI PMC

Lee W.L., Harrison R.E., Grinstein S. Phagocytosis by neutrophils. Microbes Infect. 2003;5:1299–1306. doi: 10.1016/j.micinf.2003.09.014. PubMed DOI

Filias A., Theodorou G.L., Mouzopoulou S., Varvarigou A.A., Mantagos S., Karakantza M. Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatrics. 2011;11:29. doi: 10.1186/1471-2431-11-29. PubMed DOI PMC

Kruger P., Saffarzadeh M., Weber A.N.R., Rieber N., Radsak M., von Bernuth H., Benarafa C.H., Roos D., Skokowa J., Hartl D. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathog. 2015;11:e1004651. doi: 10.1371/journal.ppat.1004651. PubMed DOI PMC

O’Neill L.A.J., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70. PubMed DOI PMC

Rosales C., Demaurex N., Lowell C.A., Uribe-Querol E. Neutrophils: Their Role in Innate and Adaptive Immunity. J. Immunol. Res. 2016;2016:1469780. doi: 10.1155/2016/1469780. PubMed DOI PMC

Nguyen G.T., Green E.R., Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell. Infect. Microbiol. 2017;7:373. doi: 10.3389/fcimb.2017.00373. PubMed DOI PMC

Selders G.S., Fetz A.E., Radic M.Z., Bowlin G.L. An overview of the role of neutrophils in innate immunity, inflammation and host-biometarial integration. Regen. Biometarials. 2017;4:55–68. doi: 10.1093/rb/rbw041. PubMed DOI PMC

Teng T.-S., Ji A.-L. Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J. Immunol. Res. 2017;2017:9671604. doi: 10.1155/2017/9671604. PubMed DOI PMC

Thomas D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017;192:88–96. doi: 10.1016/j.imlet.2017.08.016. PubMed DOI

Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC

Rosales C. Neutrophil: A Cell with Many Roles in Inflammation of Several Cell Types? Front. Physiol. 2018;9:113. doi: 10.3389/fphys.2018.00113. PubMed DOI PMC

Alam A., Thelin E.P., Tajsic T., Khan D.Z., Khellaf A., Patani R., Helmy A. Cellular infiltration in traumatic brain injury. J. Neuroinflammation. 2020;17:328. doi: 10.1186/s12974-020-02005-x. PubMed DOI PMC

Kelbich P., Slavík S., Jasanská J., Adam P., Hanuljaková E., Jermanová K., Repková E., Šimečková M., Procházková J., Gajdošová R., et al. Evaluations of the energy relations in the CSF compartment by investigation of selected parameters of the glucose metabolism in the CSF. Klin. Biochem. Metab. 1998;6:213–225.

Kelbich P., Malý V., Matuchová I., Čegan M., Staněk I., Král J., Karpjuk O., Moudrá-Wünschová I., Kubalík J., Hanuljaková E., et al. Cytological-energy analysis of pleural effusions. Ann. Clin. Biochem. 2019;56:630–637. doi: 10.1177/0004563219845415. PubMed DOI

Matuchova I., Kelbich P., Kubalik J., Hanuljakova E., Stanek I., Maly V., Karpjuk O., Krejsek J. Cytological-energy analysis of pleural effusions with predominance of neutrophils. Ther. Adv. Respir. Dis. 2020;14:1–10. doi: 10.1177/1753466620935772. PubMed DOI PMC

Kelbich P., Hejčl A., Krejsek J., Radovnický T., Matuchová I., Lodin J., Špička J., Sameš M., Procházka J., Hanuljaková E., et al. Development of the Cerebrospinal Fluid in Early Stage after Hemorrhage in the Central Nervous System. Life. 2021;11:300. doi: 10.3390/life11040300. PubMed DOI PMC

Wilson E., Olcott M.C., Bell R.M., Merrill A.H., Jr., Lambeth J.D. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. J. Biol. Chem. 1986;261:12616–12623. doi: 10.1016/S0021-9258(18)67135-2. PubMed DOI

Dahlgren C., Karlsson A. Respiratory burst in human neutrophils. J. Immunol. Methods. 1999;232:3–14. doi: 10.1016/S0022-1759(99)00146-5. PubMed DOI

Segal A.W. How Neutrophils Kill Microbes. Annu. Rev. Immunol. 2005;23:197–223. doi: 10.1146/annurev.immunol.23.021704.115653. PubMed DOI PMC

Nathan C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006;63:173–182. doi: 10.1038/nri1785. PubMed DOI

Koedel U., Frankenberg T., Kirschnek S., Obermaier B., Häcker H., Paul R., Häcker G. Apoptosis Is Essential for Neutrophil Functional Shutdown and Determines Tissue Damage in Experimental Pneumococcal Meningitis. PLoS Pathog. 2009;5:e1000461. doi: 10.1371/journal.ppat.1000461. PubMed DOI PMC

Kelbich P., Radovnický T., Selke-Krulichová I., Lodin J., Matuchová I., Sameš M., Procházka J., Krejsek J., Hanuljaková E., Hejčl A. Can aspartate aminotransferase in the cerebrospinal fluid be a reliable predicitve parameter? Brain Sci. 2020;10:698. doi: 10.3390/brainsci10100698. PubMed DOI PMC

Curi R., Newsholme P., Pithon-Curi T.C., Pires-de-Melo M., Garcia C., Homem-de-Bittencourt P.I., Jr., Gulmarães A.R.P. Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils. Braz. J. Med. Biol. Res. 1999;32:15–21. doi: 10.1590/S0100-879X1999000100002. PubMed DOI

Borregaard N., Herlin T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Investig. 1982;70:550–557. doi: 10.1172/JCI110647. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...