Development of the Cerebrospinal Fluid in Early Stage after Hemorrhage in the Central Nervous System

. 2021 Apr 01 ; 11 (4) : . [epub] 20210401

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33915782

Grantová podpora
IGA-KZ-2019-1-7 The Internal Grant of the Krajská zdravotní, a.s. in Ústí nad Labem, Czech Republic
IGA-KZ-2020-1-7 The Internal Grants of the Krajská zdravotní, a.s. in Ústí nad Labem, Czech Republic
PROGRES Q40/10 Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic

Extravasation of blood in the central nervous system (CNS) represents a very strong damaged associated molecular patterns (DAMP) which is followed by rapid inflammation and can participate in worse outcome of patients. We analyzed cerebrospinal fluid (CSF) from 139 patients after the CNS hemorrhage. We compared 109 survivors (Glasgow Outcome Score (GOS) 5-3) and 30 patients with poor outcomes (GOS 2-1). Statistical evaluations were performed using the Wilcoxon signed-rank test and the Mann-Whitney U test. Almost the same numbers of erythrocytes in both subgroups appeared in days 0-3 (p = 0.927) and a significant increase in patients with GOS 2-1 in days 7-10 after the hemorrhage (p = 0.004) revealed persistence of extravascular blood in the CNS as an adverse factor. We assess 43.3% of patients with GOS 2-1 and only 27.5% of patients with GOS 5-3 with low values of the coefficient of energy balance (KEB < 15.0) in days 0-3 after the hemorrhage as a trend to immediate intensive inflammation in the CNS of patients with poor outcomes. We consider significantly higher concentration of total protein of patients with GOS 2-1 in days 0-3 after hemorrhage (p = 0.008) as the evidence of immediate simultaneously manifested intensive inflammation, swelling of the brain and elevation of intracranial pressure.

Zobrazit více v PubMed

Sreekrishnan A., Dearborn J.L., Greer D.M., Shi F.-D., Hwang D.Y., Leasure A.C., Zhou S.E., Gilmore E.J., Matouk C.C., Petersen N.H., et al. Intracerebral hemorrhage location and functional outcomes of patients: A systematic literature review and meta-analysis. Neurocrit. Care. 2016;25:384–391. doi: 10.1007/s12028-016-0276-4. PubMed DOI

Dumont A.S., Dumont R.J., Chow M.M., Lin C., Calisaneller T., Ley K.F., Kassell N.F., Lee K.S. Cerebral vasospasm after subarachnoid hemorrhage: Putative role of inflammation. Neurosurgery. 2003;53:123–135. doi: 10.1227/01.NEU.0000068863.37133.9E. PubMed DOI

Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Progress Neurobiol. 2010;92:463–477. doi: 10.1016/j.pneurobio.2010.08.001. PubMed DOI PMC

Fassbender K., Hodapp B., Rossol S., Bertsch T., Schmeck J., Schütt S., Fritzinger M., Horn P., Vajkoczy P., Kreisel S., et al. Inflammatory cytokines in subarachnoid haemorrhage: Association with abnormal blood flow velocities in basal cerebral arteries. J. Neurol. Neurosurg. Psychiatry. 2001;70:534–537. doi: 10.1136/jnnp.70.4.534. PubMed DOI PMC

Sercombe R., Dinh Y.R.T., Gomis P. Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn. J. Pharmacol. 2002;88:227–249. doi: 10.1254/jjp.88.227. PubMed DOI

Beer R., Pfausler B., Schmutzhard E. Infectious intracranial complications in the neuro-ICU patient population. Curr. Opin. Crit. Care. 2010;16:117–122. doi: 10.1097/MCC.0b013e328338cb5f. PubMed DOI

Tso M.K., Macdonald R.L. Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia. Stroke Res. Treat. 2013;2013:425281. doi: 10.1155/2013/425281. PubMed DOI PMC

Miller B.A., Turan N., Chau M., Pradilla G. Inflammation, Vasospasm, and brain injury after subarachnoid hemorrhage. Biomed. Res. Ind. 2014;2014:384342. doi: 10.1155/2014/384342. PubMed DOI PMC

Hoogmoed J., van de Beek D., Coert B.A., Horn J., Vandertop W.P., Verbaan D. Clinical and laboratory characteristics for the diagnosis of bacterial ventriculitis after aneurysmal subarachnoid hemorrhage. Neurocrit. Care. 2017;26:326–370. doi: 10.1007/s12028-016-0345-8. PubMed DOI PMC

Winn H.R. Youmans Neurological Surgery 4-Volume Set. 6th ed. ElsevierSaunders; Amsterdam, The Netherlands: 2011.

Hejčl A., Bolcha M., Procházka J., Hušková E., Sameš M. Elevated intracranial pressure, low cerebral perfusion pressure, and impaired brain metabolism correlate with fatal outcome after severe brain injury. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2012;73:10–17. doi: 10.1055/s-0032-1304500. PubMed DOI

Hejčl A., Cihlář F., Smolka V., Vachata P., Bartoš R., Procházka J., Cihlář J., Sameš M. Chemical angioplasty with spasmolytics for vasospasm after subarachnoid hemorrhagie. Acta Neurochir. 2017;159:713–720. doi: 10.1007/s00701-017-3104-5. PubMed DOI

Leclerc J.L., Lampert A.S., Amador C.L., Schlakman B., Vasilopoulos T., Svendsen P., Moestrup S.K., Doré S. The absence of the CD163 receptor has distinct temporal influences on itracerebral hemorrhage outcomes. J. Cereb. Blood Flow Metab. 2017;38:262–273. doi: 10.1177/0271678X17701459. PubMed DOI PMC

Deisenhammer F., Bartos A., Egg R., Gilhus N.E., Giovannoni G., Rauer S., Sellebjerg F. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur. J. Neurol. 2006;13:913–922. doi: 10.1111/j.1468-1331.2006.01493.x. PubMed DOI

Gulati R., Menon M.P. Indicators of true intracerebral hemorrhage: Hematoidin, siderophage, and erythrophage. Blood. 2015;125:3664. doi: 10.1182/blood-2015-02-625301. PubMed DOI

Nagy K., Skagervik I., Tumani H., Petzold A., Wick M., Kühn H.-J., Uhr M., Regeniter A., Brettschneider J., Otto M., et al. Cerebrospinal fluid analyses for the diagnosis of subarachnoid haemorrhage and experience from a Swedish study. What method is preferable when diagnosing a subarachnoid haemorrhage? Clin. Chem. Lab. Med. 2014;51:2073–2086. PubMed

Torzewski M., Lackner K.J. Cerebrospinal fluid cytology: A highly diagnostic method for the detection of diseases of the central nervous system. J. Lab. Med. 2016;40:191–198. doi: 10.1515/labmed-2016-0044. DOI

Adam P., Táborský L., Sobek O., Hildebrand T., Kelbich P., Průcha M., Hyánek J. Advances in Clinical Chemistry. 1st ed. Academic Press; San Diego, CA, USA: 2001. Cerebrospinal fluid; pp. 1–62. PubMed

Schwenkenbecher P., Janssen T., Wurster U., Konen F.F., Neyazi A., Ahlbrecht J., Puppe W., Bönig L., Sühs K.-W., Stangel M., et al. The influence of blood contamination on cerebrospinal fluid diagnostics. Front. Neurol. 2019;10:584. doi: 10.3389/fneur.2019.00584. PubMed DOI PMC

Provencio J.J., Fu X., Siu A., Rasmussen P.A., Hazen S.L., Ransohoff R.M. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit. Care. 2010;12:244–251. doi: 10.1007/s12028-009-9308-7. PubMed DOI PMC

Kelbich P., Slavík S., Jasanská J., Adam P., Hanuljaková E., Jermanová K., Řepková E., Šimečková M., Procházková J., Gajdošová R., et al. Evaluations of the energy relations in the CSF compartment by investigation of selected parameters of the glucose metabolism in the CSF. Klin. Biochem. Metab. 1998;6:213–225.

Kelbich P., Hejčl A., Selke Krulichová I., Procházka J., Hanuljaková E., Peruthová J., Koudelková M., Sameš M., Krejsek J. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin. Chem. Lab. Med. 2014;52:1009–1017. doi: 10.1515/cclm-2013-0953. PubMed DOI

Kelbich P., Radovnický T., Selke-Krulichová I., Lodin J., Matuchová I., Sameš M., Procházka J., Krejsek J., Hanuljaková E., Hejčl A. Can aspartate aminotransferase in the cerebrospinal fluid be a reliable predicitve parameter? Brain Sci. 2020;10:698. doi: 10.3390/brainsci10100698. PubMed DOI PMC

Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin. Chim. Acta. 2001;310:173–186. doi: 10.1016/S0009-8981(01)00573-3. PubMed DOI

O’Neill L.A.J., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70. PubMed DOI PMC

Loftus R.M., Finlay D.K. Immunometabolism: Cellular metabolism turns immune regulator. J. Biol. Chem. 2016;291:1–10. doi: 10.1074/jbc.R115.693903. PubMed DOI PMC

Wei J., Raynor J., Nguyen M.H., Chi H. Nutrient and metabolic sensing in T cell responses. Front. Immunol. 2017;8:247. doi: 10.3389/fimmu.2017.00247. PubMed DOI PMC

Borregaard N., Herlin T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Investig. 1982;70:550–557. doi: 10.1172/JCI110647. PubMed DOI PMC

Huy N.T., Thao N.T.H., Diep D.T.N., Kikuchi M., Zamora J., Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: A systemic review and meta-analysis. Crit. Care. 2010;14:R240. doi: 10.1186/cc9395. PubMed DOI PMC

Prasad K., Sahu J.K. Cerebrospinal fluid lactate. Is it a reliable and valid marker to distinguish between acute bacterial meningitis and aseptic meningitis? Crit. Care. 2011;15:104. PubMed PMC

Viallon A., Desseigne N., Marjollet O., Birynczyk A., Belin M., Guyomarch S., Borg J., Pozetto B., Bertrand J.C., Zeni F. Meningitis in adult patients with a negative direct cerebrospinal fluid examination: Value of cytochemical markers for differential diagnosis. Crit. Care. 2011;15:R136. doi: 10.1186/cc10254. PubMed DOI PMC

Leen W.G., Willemsen M.A., Wevers R.A., Verbeek M.M. Cerebrospinal fluid glucose and lactate: Age-specific reference values and implications for clinical practice. PLoS ONE. 2012;7:e42745. doi: 10.1371/journal.pone.0042745. PubMed DOI PMC

Hegen H., Auer M., Deisenhammer F. Serum glucose adjusted cut-off values for normal cerebrospinal fluid/serum glucose ratio: Implications for clinical practice. Clin. Chem. Lab. Med. 2014;52:1335–1340. doi: 10.1515/cclm-2014-0077. PubMed DOI

Filho E.M., Horita S.M., Gilio A.E., Nigrovic L.E. Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children. Int. J. Emerg. Med. 2014;7:14. doi: 10.1186/1865-1380-7-14. PubMed DOI PMC

Li Y., Zhang G., Ma R., Du Y., Zhang L., Li F., Fang F., Lv H., Wang Q., Zhang Y., et al. The diagnostic value of cerebrospinal fluids procalcitonin and lactate for the differential diagnosis of post-neurosurgical bacterial meningitis and aseptic meningitis. Clin. Biochem. 2015;48:50–54. doi: 10.1016/j.clinbiochem.2014.10.007. PubMed DOI

Slack S.D., Turley P., Allgar V., Holbrook I.B. Cerebrospinal fluid lactate: Measurement of an adult reference interval. Ann. Clin. Biochem. 2016;53:164–167. doi: 10.1177/0004563215591633. PubMed DOI

Kelbich P., Hejčl A., Staněk I., Svítilová E., Hanuljaková E., Sameš M. Principles of the cytological-energy analysis of the extravascular body fluids. Biochem. Mol. Biol. J. 2017;3:6.

McGirt M.J., Woodworth G.F., Ali M., Than K.D., Tamargo R.J., Clatterbuck R.E. Persistent perioperative hyperglycemia as an independent predictor of poor outcome after aneurismal subarachnoid hemorrhage. J. Neurosurg. 2007;107:1080–1085. doi: 10.3171/JNS-07/12/1080. PubMed DOI

Karlson P. Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. 10th ed. Georg Thieme Verlag; Stuttgart, Germany: 1977.

Murray R.K., Granner D.K., Mayes P.A., Rodwell V.W. Harper’s Biochemistry. 23th ed. H&H; Prague, Czech Republic: 1998.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...