Development of the Cerebrospinal Fluid in Early Stage after Hemorrhage in the Central Nervous System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA-KZ-2019-1-7
The Internal Grant of the Krajská zdravotní, a.s. in Ústí nad Labem, Czech Republic
IGA-KZ-2020-1-7
The Internal Grants of the Krajská zdravotní, a.s. in Ústí nad Labem, Czech Republic
PROGRES Q40/10
Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic
PubMed
33915782
PubMed Central
PMC8065782
DOI
10.3390/life11040300
PII: life11040300
Knihovny.cz E-zdroje
- Klíčová slova
- CNS haemorrhage, aspartate aminotransferase in CSF, cerebrospinal fluid, coefficient of energy balance, erythrocytes in CSF, inflammation in CNS, neutrophils in CSF, total protein in CSF,
- Publikační typ
- časopisecké články MeSH
Extravasation of blood in the central nervous system (CNS) represents a very strong damaged associated molecular patterns (DAMP) which is followed by rapid inflammation and can participate in worse outcome of patients. We analyzed cerebrospinal fluid (CSF) from 139 patients after the CNS hemorrhage. We compared 109 survivors (Glasgow Outcome Score (GOS) 5-3) and 30 patients with poor outcomes (GOS 2-1). Statistical evaluations were performed using the Wilcoxon signed-rank test and the Mann-Whitney U test. Almost the same numbers of erythrocytes in both subgroups appeared in days 0-3 (p = 0.927) and a significant increase in patients with GOS 2-1 in days 7-10 after the hemorrhage (p = 0.004) revealed persistence of extravascular blood in the CNS as an adverse factor. We assess 43.3% of patients with GOS 2-1 and only 27.5% of patients with GOS 5-3 with low values of the coefficient of energy balance (KEB < 15.0) in days 0-3 after the hemorrhage as a trend to immediate intensive inflammation in the CNS of patients with poor outcomes. We consider significantly higher concentration of total protein of patients with GOS 2-1 in days 0-3 after hemorrhage (p = 0.008) as the evidence of immediate simultaneously manifested intensive inflammation, swelling of the brain and elevation of intracranial pressure.
Biomedical Centre Masaryk Hospital Ústí nad Labem 401 13 Ústí nad Labem Czech Republic
International Clinical Research Center St Anne's University Hospital 656 91 Brno Czech Republic
Zobrazit více v PubMed
Sreekrishnan A., Dearborn J.L., Greer D.M., Shi F.-D., Hwang D.Y., Leasure A.C., Zhou S.E., Gilmore E.J., Matouk C.C., Petersen N.H., et al. Intracerebral hemorrhage location and functional outcomes of patients: A systematic literature review and meta-analysis. Neurocrit. Care. 2016;25:384–391. doi: 10.1007/s12028-016-0276-4. PubMed DOI
Dumont A.S., Dumont R.J., Chow M.M., Lin C., Calisaneller T., Ley K.F., Kassell N.F., Lee K.S. Cerebral vasospasm after subarachnoid hemorrhage: Putative role of inflammation. Neurosurgery. 2003;53:123–135. doi: 10.1227/01.NEU.0000068863.37133.9E. PubMed DOI
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Progress Neurobiol. 2010;92:463–477. doi: 10.1016/j.pneurobio.2010.08.001. PubMed DOI PMC
Fassbender K., Hodapp B., Rossol S., Bertsch T., Schmeck J., Schütt S., Fritzinger M., Horn P., Vajkoczy P., Kreisel S., et al. Inflammatory cytokines in subarachnoid haemorrhage: Association with abnormal blood flow velocities in basal cerebral arteries. J. Neurol. Neurosurg. Psychiatry. 2001;70:534–537. doi: 10.1136/jnnp.70.4.534. PubMed DOI PMC
Sercombe R., Dinh Y.R.T., Gomis P. Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn. J. Pharmacol. 2002;88:227–249. doi: 10.1254/jjp.88.227. PubMed DOI
Beer R., Pfausler B., Schmutzhard E. Infectious intracranial complications in the neuro-ICU patient population. Curr. Opin. Crit. Care. 2010;16:117–122. doi: 10.1097/MCC.0b013e328338cb5f. PubMed DOI
Tso M.K., Macdonald R.L. Acute microvascular changes after subarachnoid hemorrhage and transient global cerebral ischemia. Stroke Res. Treat. 2013;2013:425281. doi: 10.1155/2013/425281. PubMed DOI PMC
Miller B.A., Turan N., Chau M., Pradilla G. Inflammation, Vasospasm, and brain injury after subarachnoid hemorrhage. Biomed. Res. Ind. 2014;2014:384342. doi: 10.1155/2014/384342. PubMed DOI PMC
Hoogmoed J., van de Beek D., Coert B.A., Horn J., Vandertop W.P., Verbaan D. Clinical and laboratory characteristics for the diagnosis of bacterial ventriculitis after aneurysmal subarachnoid hemorrhage. Neurocrit. Care. 2017;26:326–370. doi: 10.1007/s12028-016-0345-8. PubMed DOI PMC
Winn H.R. Youmans Neurological Surgery 4-Volume Set. 6th ed. ElsevierSaunders; Amsterdam, The Netherlands: 2011.
Hejčl A., Bolcha M., Procházka J., Hušková E., Sameš M. Elevated intracranial pressure, low cerebral perfusion pressure, and impaired brain metabolism correlate with fatal outcome after severe brain injury. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2012;73:10–17. doi: 10.1055/s-0032-1304500. PubMed DOI
Hejčl A., Cihlář F., Smolka V., Vachata P., Bartoš R., Procházka J., Cihlář J., Sameš M. Chemical angioplasty with spasmolytics for vasospasm after subarachnoid hemorrhagie. Acta Neurochir. 2017;159:713–720. doi: 10.1007/s00701-017-3104-5. PubMed DOI
Leclerc J.L., Lampert A.S., Amador C.L., Schlakman B., Vasilopoulos T., Svendsen P., Moestrup S.K., Doré S. The absence of the CD163 receptor has distinct temporal influences on itracerebral hemorrhage outcomes. J. Cereb. Blood Flow Metab. 2017;38:262–273. doi: 10.1177/0271678X17701459. PubMed DOI PMC
Deisenhammer F., Bartos A., Egg R., Gilhus N.E., Giovannoni G., Rauer S., Sellebjerg F. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur. J. Neurol. 2006;13:913–922. doi: 10.1111/j.1468-1331.2006.01493.x. PubMed DOI
Gulati R., Menon M.P. Indicators of true intracerebral hemorrhage: Hematoidin, siderophage, and erythrophage. Blood. 2015;125:3664. doi: 10.1182/blood-2015-02-625301. PubMed DOI
Nagy K., Skagervik I., Tumani H., Petzold A., Wick M., Kühn H.-J., Uhr M., Regeniter A., Brettschneider J., Otto M., et al. Cerebrospinal fluid analyses for the diagnosis of subarachnoid haemorrhage and experience from a Swedish study. What method is preferable when diagnosing a subarachnoid haemorrhage? Clin. Chem. Lab. Med. 2014;51:2073–2086. PubMed
Torzewski M., Lackner K.J. Cerebrospinal fluid cytology: A highly diagnostic method for the detection of diseases of the central nervous system. J. Lab. Med. 2016;40:191–198. doi: 10.1515/labmed-2016-0044. DOI
Adam P., Táborský L., Sobek O., Hildebrand T., Kelbich P., Průcha M., Hyánek J. Advances in Clinical Chemistry. 1st ed. Academic Press; San Diego, CA, USA: 2001. Cerebrospinal fluid; pp. 1–62. PubMed
Schwenkenbecher P., Janssen T., Wurster U., Konen F.F., Neyazi A., Ahlbrecht J., Puppe W., Bönig L., Sühs K.-W., Stangel M., et al. The influence of blood contamination on cerebrospinal fluid diagnostics. Front. Neurol. 2019;10:584. doi: 10.3389/fneur.2019.00584. PubMed DOI PMC
Provencio J.J., Fu X., Siu A., Rasmussen P.A., Hazen S.L., Ransohoff R.M. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit. Care. 2010;12:244–251. doi: 10.1007/s12028-009-9308-7. PubMed DOI PMC
Kelbich P., Slavík S., Jasanská J., Adam P., Hanuljaková E., Jermanová K., Řepková E., Šimečková M., Procházková J., Gajdošová R., et al. Evaluations of the energy relations in the CSF compartment by investigation of selected parameters of the glucose metabolism in the CSF. Klin. Biochem. Metab. 1998;6:213–225.
Kelbich P., Hejčl A., Selke Krulichová I., Procházka J., Hanuljaková E., Peruthová J., Koudelková M., Sameš M., Krejsek J. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin. Chem. Lab. Med. 2014;52:1009–1017. doi: 10.1515/cclm-2013-0953. PubMed DOI
Kelbich P., Radovnický T., Selke-Krulichová I., Lodin J., Matuchová I., Sameš M., Procházka J., Krejsek J., Hanuljaková E., Hejčl A. Can aspartate aminotransferase in the cerebrospinal fluid be a reliable predicitve parameter? Brain Sci. 2020;10:698. doi: 10.3390/brainsci10100698. PubMed DOI PMC
Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin. Chim. Acta. 2001;310:173–186. doi: 10.1016/S0009-8981(01)00573-3. PubMed DOI
O’Neill L.A.J., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70. PubMed DOI PMC
Loftus R.M., Finlay D.K. Immunometabolism: Cellular metabolism turns immune regulator. J. Biol. Chem. 2016;291:1–10. doi: 10.1074/jbc.R115.693903. PubMed DOI PMC
Wei J., Raynor J., Nguyen M.H., Chi H. Nutrient and metabolic sensing in T cell responses. Front. Immunol. 2017;8:247. doi: 10.3389/fimmu.2017.00247. PubMed DOI PMC
Borregaard N., Herlin T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Investig. 1982;70:550–557. doi: 10.1172/JCI110647. PubMed DOI PMC
Huy N.T., Thao N.T.H., Diep D.T.N., Kikuchi M., Zamora J., Hirayama K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: A systemic review and meta-analysis. Crit. Care. 2010;14:R240. doi: 10.1186/cc9395. PubMed DOI PMC
Prasad K., Sahu J.K. Cerebrospinal fluid lactate. Is it a reliable and valid marker to distinguish between acute bacterial meningitis and aseptic meningitis? Crit. Care. 2011;15:104. PubMed PMC
Viallon A., Desseigne N., Marjollet O., Birynczyk A., Belin M., Guyomarch S., Borg J., Pozetto B., Bertrand J.C., Zeni F. Meningitis in adult patients with a negative direct cerebrospinal fluid examination: Value of cytochemical markers for differential diagnosis. Crit. Care. 2011;15:R136. doi: 10.1186/cc10254. PubMed DOI PMC
Leen W.G., Willemsen M.A., Wevers R.A., Verbeek M.M. Cerebrospinal fluid glucose and lactate: Age-specific reference values and implications for clinical practice. PLoS ONE. 2012;7:e42745. doi: 10.1371/journal.pone.0042745. PubMed DOI PMC
Hegen H., Auer M., Deisenhammer F. Serum glucose adjusted cut-off values for normal cerebrospinal fluid/serum glucose ratio: Implications for clinical practice. Clin. Chem. Lab. Med. 2014;52:1335–1340. doi: 10.1515/cclm-2014-0077. PubMed DOI
Filho E.M., Horita S.M., Gilio A.E., Nigrovic L.E. Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children. Int. J. Emerg. Med. 2014;7:14. doi: 10.1186/1865-1380-7-14. PubMed DOI PMC
Li Y., Zhang G., Ma R., Du Y., Zhang L., Li F., Fang F., Lv H., Wang Q., Zhang Y., et al. The diagnostic value of cerebrospinal fluids procalcitonin and lactate for the differential diagnosis of post-neurosurgical bacterial meningitis and aseptic meningitis. Clin. Biochem. 2015;48:50–54. doi: 10.1016/j.clinbiochem.2014.10.007. PubMed DOI
Slack S.D., Turley P., Allgar V., Holbrook I.B. Cerebrospinal fluid lactate: Measurement of an adult reference interval. Ann. Clin. Biochem. 2016;53:164–167. doi: 10.1177/0004563215591633. PubMed DOI
Kelbich P., Hejčl A., Staněk I., Svítilová E., Hanuljaková E., Sameš M. Principles of the cytological-energy analysis of the extravascular body fluids. Biochem. Mol. Biol. J. 2017;3:6.
McGirt M.J., Woodworth G.F., Ali M., Than K.D., Tamargo R.J., Clatterbuck R.E. Persistent perioperative hyperglycemia as an independent predictor of poor outcome after aneurismal subarachnoid hemorrhage. J. Neurosurg. 2007;107:1080–1085. doi: 10.3171/JNS-07/12/1080. PubMed DOI
Karlson P. Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. 10th ed. Georg Thieme Verlag; Stuttgart, Germany: 1977.
Murray R.K., Granner D.K., Mayes P.A., Rodwell V.W. Harper’s Biochemistry. 23th ed. H&H; Prague, Czech Republic: 1998.