Basic Analysis of the Cerebrospinal Fluid: An Important Framework for Laboratory Diagnostics of the Impairment of the Central Nervous System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA-KZ-2021-1-2
The Internal Grant of the Krajská zdravotní, a.s. in Ústí nad Labem, Czech Republic
Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic, Cooperatio Program, research area IMMU.
PubMed
36005147
PubMed Central
PMC9406567
DOI
10.3390/cimb44080251
PII: cimb44080251
Knihovny.cz E-zdroje
- Klíčová slova
- aspartate aminotransferase, blood-brain barrier, blood-cerebrospinal fluid barrier, cerebrospinal fluid, coefficient of energy balance, cytological-energy analysis,
- Publikační typ
- časopisecké články MeSH
Laboratory analysis of basic cerebrospinal fluid (CSF) parameters is considered as essential for any CSF evaluation. It can provide rapidly very valuable information about the status of the central nervous system (CNS). Our retrospective study evaluated parameters of basic CSF analysis in cases of either infectious or non-infectious CNS involvement. Neutrophils are effector cells of innate immunity. Predominance of neutrophils was found in 98.2% of patients with purulent inflammation in CNS. Lymphocytes are cellular substrate of adaptive immunity. We found their predominance in 94.8% of patients with multiple sclerosis (MS), 66.7% of patients with tick-borne encephalitis (TBE), 92.2% of patients with neuroborreliosis, 83.3% of patients with inflammatory response with oxidative burst of macrophages in CNS and 75.0% of patients with malignant infiltration of meninges (MIM). The simultaneous assessment of aerobic and anaerobic metabolism in CSF using the coefficient of energy balance (KEB) allows us to specify the type of inflammation in CNS. We found predominantly aerobic metabolism (KEB > 28.0) in 100.0% CSF of patients with normal CSF findings and in 92.8% CSF of patients with MS. Predominant faintly anaerobic metabolism (28.0 > KEB > 20.0) in CSF was found in 71.8% patients with TBE and in 64.7% patients with neuroborreliosis. Strong anaerobic metabolism (KEB < 10.0) was found in the CSF of 99.1% patients with purulent inflammation, 100.0% patients with inflammatory response with oxidative burst of macrophages and in 80.6% patients with MIM. Joint evaluation of basic CSF parameters provides sufficient information about the immune response in the CSF compartment for rapid and reliable diagnosis of CNS involvement.
Zobrazit více v PubMed
Solár P., Zamani A., Kubíčková L., Dubový P., Joukal M. Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17:35. doi: 10.1186/s12987-020-00196-2. PubMed DOI PMC
Hladky B., Barrand M.A. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers: A comparative account of mechanisms and roles. Fluids Barriers CNS. 2016;13:19. doi: 10.1186/s12987-016-0040-3. PubMed DOI PMC
Spector R., Keep R.F., Snodgrass S.R., Smith Q.R., Johanson C.E. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp. Neurol. 2015;267:78–86. doi: 10.1016/j.expneurol.2015.02.032. PubMed DOI
Giovannoni G. Cerebrospinal fluid analysis. Handb. Clin. Neurol. 2014;122:681–702. PubMed
Damkier H.H., Brown P.D., Praetorius J. Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiol. Rev. 2013;93:1847–1892. doi: 10.1152/physrev.00004.2013. PubMed DOI
Chodobski A., Zink B.J., Szmydynger-Chodobska J. Blood–Brain Barrier Pathophysiology in Traumatic Brain Injury. Transl. Stroke Res. 2011;2:492–516. doi: 10.1007/s12975-011-0125-x. PubMed DOI PMC
Gloor S.M., Wachtel M., Bolliger M.F., Ishihara H., Landmann R., Frei K. Molecular and cellular permeability control at the blood–brain barrier. Brain Res. Rev. 2001;36:258–264. doi: 10.1016/S0165-0173(01)00102-3. PubMed DOI
Kelbich P., Vachata P., Maly V., Novotny T., Spicka J., Matuchova I., Radovnicky T., Stanek I., Kubalik J., Karpjuk O., et al. Neutrophils in Extravascular Body Fluids: Cytological-Energy Analysis Enables Rapid, Reliable and Inexpensive Detection of Purulent Inflammation and Tissue Damage. Life. 2022;12:160. doi: 10.3390/life12020160. PubMed DOI PMC
Kelbich P., Hejčl A., Krejsek J., Radovnický T., Matuchová I., Lodin J., Špička J., Sameš M., Procházka J., Hanuljaková E., et al. Development of the Cerebrospinal Fluid in Early Stage after Hemorrhage in the Central Nervous System. Life. 2021;11:300. doi: 10.3390/life11040300. PubMed DOI PMC
Sobek O., Dušková J. Laboratorní vyšetření likvoru. In: Štětkářová I., editor. Spinální Neurologie. 1st ed. Prague; Maxdorf, Germany: 2019. pp. 57–81.
Zeman D. Praktický Průvodce Laboratorním Vyšetřením Likvoru. 1st ed. Univerzita Palackého; Olomouc, Czech Republic: 2018. pp. 30–32.
Kelbich P., Hejčl A., Staněk I., Svítilová E., Hanuljaková E., Sameš M. Principles of the cytological-energy analysis of the extravascular body fluids. Biochem. Mol. Biol. J. 2017;3:6.
Mrázová K., Zeman D., Bořecká K., Ženková J., Brož P., Mareš J., Hanzalová J., Král V., Krbková L. Recommendation to analysis of cerebrospinal fluid, Klin. Biochem. Metab. 2017;25:43–47.
Kelbich P., Hejčl A., Krulichová I.S., Procházka J., Hanuljaková E., Peruthová J., Koudelková M., Sameš M., Krejsek J. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin. Chem. Lab. Med. (CCLM) 2014;52:1009–1017. doi: 10.1515/cclm-2013-0953. PubMed DOI
Bořecká K., Adam P., Sobek O., Hajduková L., Lánská V., Nekola P. Coefficient of Energy Balance: Effective Tool for Early Differential Diagnosis of CNS Diseases. BioMed Res. Int. 2013;2013:745943. doi: 10.1155/2013/745943. PubMed DOI PMC
Sobek O., Adam P., Koudelková M., Štourač P., Mareš J. The algorithm of CSF examination according to the recommen-dation of the Committee of CSF and Neuroimmunology of the Czech Neurological Society. Ceska A Slov. Neurol. A Neurochir. 2012;75:159–163.
Kelbich P., Slavík S., Jasanská J., Adam P., Hanuljaková E., Jermanová K., Repková E., Šimečková M., Procházková J., Gajdošová R., et al. Evaluations of the energy relations in the CSF compartment by investigation of selected parameters of the glucose metabolism in the CSF. Klin. Biochem. Metab. 1998;6:213–225.
Kelbich P., Radovnický T., Selke-Krulichová I., Lodin J., Matuchová I., Sameš M., Procházka J., Krejsek J., Hanuljaková E., Hejčl A. Can aspartate aminotransferase in the cerebrospinal fluid be a reliable predictive parameter? Brain Sci. 2020;10:698. doi: 10.3390/brainsci10100698. PubMed DOI PMC
Seehusen D.A., Reeves M.M., Fomin D.A. Cerebrospinal Fluid Analysis. Am. Fam. Physician. 2003;68:1103–1108. PubMed
Adam P., Táborský L., Sobek O., Hildebrand T., Kelbich P., Průcha M., Hyánek J. Cerebrospinal fluid. Adv. Clin. Chem. 2001;36:1–62. PubMed
Teng T.-S., Ji A.-L., Ji X.-Y., Li Y.-Z. Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J. Immunol. Res. 2017;2017:9671604. doi: 10.1155/2017/9671604. PubMed DOI PMC
Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.C., Nauseef W.M. Myeloperoxidase: A front-line defender against phagocyted microorganisms. J. Leukoc. Biol. 2013;93:185–198. doi: 10.1189/jlb.0712349. PubMed DOI PMC
Thomas D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017;192:88–96. doi: 10.1016/j.imlet.2017.08.016. PubMed DOI
O’Neill L.A., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70. PubMed DOI PMC
Segal A.W. How Neutrophils Kill Microbes. Annu. Rev. Immunol. 2005;23:197–223. doi: 10.1146/annurev.immunol.23.021704.115653. PubMed DOI PMC
Dahlgren C., Karlsson A. Respiratory burst in human neutrophils. J. Immunol. Methods. 1999;232:3–14. doi: 10.1016/S0022-1759(99)00146-5. PubMed DOI
Wilson E., Olcott M.C., Bell R.M., Merrill A.H., Jr., Lambeth J.D. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. J. Biol. Chem. 1986;261:12616–12623. doi: 10.1016/S0021-9258(18)67135-2. PubMed DOI
Borregaard N., Herlin T. Energy Metabolism of Human Neutrophils during Phagocytosis. J. Clin. Investig. 1982;70:550–557. doi: 10.1172/JCI110647. PubMed DOI PMC
Pietikäinen A., Maksimow M., Kauko T., Hurme S., Salmi M., Hytönen J. Cerebrospinal fluid cytokines in Lyme neuroborreliosis. J. Neuroinflamm. 2016;13:273. doi: 10.1186/s12974-016-0745-x. PubMed DOI PMC
Bogovic P., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;16:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Koedel U., Fingerle V., Pfister H.-W. Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat. Rev. Neurol. 2015;11:446–456. doi: 10.1038/nrneurol.2015.121. PubMed DOI
Djukic M., Schmidt-Samoa C., Lange P., Spreer A., Neubieser K., Eiffert H., Nau R., Schmidt H. Cerebrospinal fluid findings in adults with acute Lyme neuroborreliosis. J. Neurol. 2011;259:630–636. doi: 10.1007/s00415-011-6221-8. PubMed DOI PMC
van Burgel N.D., Bakels F., Kroes A.C.M., van Dam A.P. Discriminating Lyme Neuroborreliosis from other Neuroin-flammatory Diseases by Levels of CXCL13 in Cerebrospinal Fluid. J. Clin. Microbiol. 2011;49:2027–2030. doi: 10.1128/JCM.00084-11. PubMed DOI PMC
Kaiser R. Tick-Borne Encephalitis. Infect. Dis. Clin. N. Am. 2008;22:561–575. doi: 10.1016/j.idc.2008.03.013. PubMed DOI
Kaiser R. Neuroborreliosis. J. Neurol. 1998;245:247–255. doi: 10.1007/s004150050214. PubMed DOI
Lindquist L., Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–1871. doi: 10.1016/S0140-6736(08)60800-4. PubMed DOI
Oschmann P., Dorndorf W., Hornig C., Schäfer C., Wellensiek H.J., Pflughaupt K.W. Stages and syndromes of neurobor-reliosis. J. Neurol. 1998;245:262–272. doi: 10.1007/s004150050216. PubMed DOI
Holzmann H. Diagnosis of tick-borne encephalitis. Vaccine. 2003;21:S36–S40. doi: 10.1016/S0264-410X(02)00819-8. PubMed DOI
Dumpis U., Crook D., Oksi J. Tick-Borne Encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI
Garcia-Monco J.C., Benach J.L. Lyme Neuroborreliosis. Ann. Neurol. 1995;37:691–702. doi: 10.1002/ana.410370602. PubMed DOI
Tumani H., Nolker G., Reiber H. Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology. 1995;45:1663–1670. doi: 10.1212/WNL.45.9.1663. PubMed DOI
Fisher K.M., Montrief T., Ramzy M., Koyfman A., Long B. Cryptococcal meningitis: A review for emergency clinicians. Intern. Emerg. Med. 2021;16:1031–1042. doi: 10.1007/s11739-020-02619-2. PubMed DOI
Li M., Liu J., Deng X., Gan Q., Wang Y., Xu X., Jiang Y., Peng F. Triple therapy combined with ventriculoperitoneal shunts can improve neurological function and shorten hospitalization time in non-HIV cryptococcal meningitis patients with in-creased intracranial pressure. BMC Infect Dis. 2020;20:844. doi: 10.1186/s12879-020-05510-9. PubMed DOI PMC
Pereira M.E.V.D.C., Gonzalez D.E., Roberto F.B., Foresto R.D., Kirsztajn G.M., Júnior M.D.S.D. Listeria monocytogenes meningoencephalitis in a patient with Systemic Lupus Erythematosus. J. Bras. Nefrol. 2020;42:375–379. doi: 10.1590/2175-8239-jbn-2019-0212. PubMed DOI PMC
Natrajan M., Daniel B.D., Grace G.A. Tuberculous meningitis in children: Clinical management & outcome. Indian J. Med. Res. 2019;150:117–130. doi: 10.4103/ijmr.ijmr_786_17. PubMed DOI PMC
Heemskerk A.D., Donovan J., Thu D.D.A., Marais S., Chaidir L., Dung V.T.M., Centner C.M., Ha V.T.N., Annisa J., Dian S., et al. Improving the microbiological diagnosis of tuberculous meningitis: A prospective, international, multicentre comparison of conventional and modified Ziehl–Neelsen stain, GeneXpert, and culture of cerebrospinal fluid. J. Infect. 2018;77:509–515. doi: 10.1016/j.jinf.2018.09.003. PubMed DOI PMC
Shi T.Y., Zhang Y.F., Shi X.H., Wen X.H., Dong X., Meng J., Li H.Y., Yuan X.X., Zheng Y., Lu Y.W. A rare case of me-ningoencephalitis by Listeria monocytogenes in systemic lupus erythematosus: Case report and review. Clin. Rheumatol. 2018;37:271–275. doi: 10.1007/s10067-017-3783-6. PubMed DOI
Philip N., William T., William D.V. Diagnosis of tuberculous meningitis: Challenges and promises. Malays. J. Pathol. 2015;37:1–9. PubMed
Bicanic T., Harrison T.S. Cryptococcal meningitis. Br. Med. Bull. 2005;72:99–118. doi: 10.1093/bmb/ldh043. PubMed DOI
Mink S., List W., Reimann P., Fraunberger P. CSF-interleukin 6 for early diagnosis of ventriculitis in a broad intensive care setting. Clin. Chem. Lab. Med. (CCLM) 2022;60:e129–e131. doi: 10.1515/cclm-2021-1233. PubMed DOI
Behari S., Kumar A., Sardhara J.C., Singh G., Kanjilal S., Maurya V.P. Malignant Meningitis Associated with Hydrocephalus. Neurol. India. 2021;69:443. doi: 10.4103/0028-3886.332278. PubMed DOI
Wesenhagen K.E.J., Teunissen C.E., Visser P.J., Tijms B.M. Cerebrospinal fluid proteomics and biological heterogeneity in Alzheimer’s disease: A literature review. Crit. Rev. Clin. Lab. Sci. 2019;57:86–98. doi: 10.1080/10408363.2019.1670613. PubMed DOI
Chamberlain M.C. Neoplastic meningitis. Oncologist. 2008;13:967–977. doi: 10.1634/theoncologist.2008-0138. PubMed DOI
O’Connor K.C., Bar-Or A., Hafler D.A. The Neuroimmunology of Multiple Sclerosis: Possible Roles of T and B Lymphocytes in Immunopathogenesis. J. Clin. Immunol. 2001;21:81–92. doi: 10.1023/A:1011064007686. PubMed DOI
Noseworthy J.H., Lucchinetti C., Rodriguez M., Weinshenker B.G. Multiple sclerosis. N. Engl. J. Med. 2000;343:938–952. doi: 10.1056/NEJM200009283431307. PubMed DOI
Magliozzi R., Cross A.H. Can CSF biomarkers predict future MS disease activity and severity? Mult. Scler. 2020;26:582–590. doi: 10.1177/1352458519871818. PubMed DOI
Gajofatto A., Calabrese M., Benedetti M.D., Monaco S. Clinical, MRI, and CSF Markers of Disability Progression in Multiple Sclerosis. Dis. Markers. 2013;35:687–699. doi: 10.1155/2013/484959. PubMed DOI PMC
Chabas D., Ness J., Belman A., Yeh E.A., Kuntz N.L., Gorman M.P., Strober J.B., De Kouchkovsky I., McCulloch C., Chitnis T., et al. Younger children with MS have a distinct CSF inflammatory profile at disease onset. Neurology. 2010;74:399–405. doi: 10.1212/WNL.0b013e3181ce5db0. PubMed DOI PMC
Wang N., Bertalan M.S., Brastianos P.K. Leptomeningeal metastasis from systemic cancer: Review and update on management. Cancer. 2018;124:21–35. doi: 10.1002/cncr.30911. PubMed DOI PMC
Adams M., Doherty C., O’Kane A., Hall S., Forbes R.B., Herron B., McNaboe E.J. Malignant meningitis secondary to oesophageal adenocarcinoma presenting with sensorineural hearing loss: A series of three cases and discussion of the literature. Eur. Arch. Otorhinolaryngol. 2016;273:2481–2486. doi: 10.1007/s00405-015-3842-z. PubMed DOI
Roth P., Weller M. Management of neoplastic meningitis. Chin. Clin. Oncol. 2015;4:26. doi: 10.3978/j.issn.2304-3865.2015.05.02. PubMed DOI
Remer K.A., Reimer T., Brcic M., Jungi T.W. Evidence for involvement of peptidoglycan in the triggering of an oxidative burst by Listeria monocytogenes in phagocytes. Clin. Exp. Immunol. 2005;140:73–80. doi: 10.1111/j.1365-2249.2005.02740.x. PubMed DOI PMC
Piddington D.L., Fang F.C., Laessig T., Cooper A.M., Orme I.M., Buchmeier N.A. Cu, Zn superoxide dismutase of Myco-bacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect. Immun. 2001;69:4980–4987. doi: 10.1128/IAI.69.8.4980-4987.2001. PubMed DOI PMC
Kuhn M., Goebel W. Responses by murine macrophages infected with Listeria monocytogenes crucial for the development of immunity to this pathogen. Immunol. Rev. 1997;158:57–93. doi: 10.1111/j.1600-065X.1997.tb00992.x. PubMed DOI