Basic Analysis of the Cerebrospinal Fluid: An Important Framework for Laboratory Diagnostics of the Impairment of the Central Nervous System

. 2022 Aug 14 ; 44 (8) : 3666-3680. [epub] 20220814

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36005147

Grantová podpora
IGA-KZ-2021-1-2 The Internal Grant of the Krajská zdravotní, a.s. in Ústí nad Labem, Czech Republic
Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic, Cooperatio Program, research area IMMU.

Laboratory analysis of basic cerebrospinal fluid (CSF) parameters is considered as essential for any CSF evaluation. It can provide rapidly very valuable information about the status of the central nervous system (CNS). Our retrospective study evaluated parameters of basic CSF analysis in cases of either infectious or non-infectious CNS involvement. Neutrophils are effector cells of innate immunity. Predominance of neutrophils was found in 98.2% of patients with purulent inflammation in CNS. Lymphocytes are cellular substrate of adaptive immunity. We found their predominance in 94.8% of patients with multiple sclerosis (MS), 66.7% of patients with tick-borne encephalitis (TBE), 92.2% of patients with neuroborreliosis, 83.3% of patients with inflammatory response with oxidative burst of macrophages in CNS and 75.0% of patients with malignant infiltration of meninges (MIM). The simultaneous assessment of aerobic and anaerobic metabolism in CSF using the coefficient of energy balance (KEB) allows us to specify the type of inflammation in CNS. We found predominantly aerobic metabolism (KEB > 28.0) in 100.0% CSF of patients with normal CSF findings and in 92.8% CSF of patients with MS. Predominant faintly anaerobic metabolism (28.0 > KEB > 20.0) in CSF was found in 71.8% patients with TBE and in 64.7% patients with neuroborreliosis. Strong anaerobic metabolism (KEB < 10.0) was found in the CSF of 99.1% patients with purulent inflammation, 100.0% patients with inflammatory response with oxidative burst of macrophages and in 80.6% patients with MIM. Joint evaluation of basic CSF parameters provides sufficient information about the immune response in the CSF compartment for rapid and reliable diagnosis of CNS involvement.

Zobrazit více v PubMed

Solár P., Zamani A., Kubíčková L., Dubový P., Joukal M. Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17:35. doi: 10.1186/s12987-020-00196-2. PubMed DOI PMC

Hladky B., Barrand M.A. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers: A comparative account of mechanisms and roles. Fluids Barriers CNS. 2016;13:19. doi: 10.1186/s12987-016-0040-3. PubMed DOI PMC

Spector R., Keep R.F., Snodgrass S.R., Smith Q.R., Johanson C.E. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp. Neurol. 2015;267:78–86. doi: 10.1016/j.expneurol.2015.02.032. PubMed DOI

Giovannoni G. Cerebrospinal fluid analysis. Handb. Clin. Neurol. 2014;122:681–702. PubMed

Damkier H.H., Brown P.D., Praetorius J. Cerebrospinal Fluid Secretion by the Choroid Plexus. Physiol. Rev. 2013;93:1847–1892. doi: 10.1152/physrev.00004.2013. PubMed DOI

Chodobski A., Zink B.J., Szmydynger-Chodobska J. Blood–Brain Barrier Pathophysiology in Traumatic Brain Injury. Transl. Stroke Res. 2011;2:492–516. doi: 10.1007/s12975-011-0125-x. PubMed DOI PMC

Gloor S.M., Wachtel M., Bolliger M.F., Ishihara H., Landmann R., Frei K. Molecular and cellular permeability control at the blood–brain barrier. Brain Res. Rev. 2001;36:258–264. doi: 10.1016/S0165-0173(01)00102-3. PubMed DOI

Kelbich P., Vachata P., Maly V., Novotny T., Spicka J., Matuchova I., Radovnicky T., Stanek I., Kubalik J., Karpjuk O., et al. Neutrophils in Extravascular Body Fluids: Cytological-Energy Analysis Enables Rapid, Reliable and Inexpensive Detection of Purulent Inflammation and Tissue Damage. Life. 2022;12:160. doi: 10.3390/life12020160. PubMed DOI PMC

Kelbich P., Hejčl A., Krejsek J., Radovnický T., Matuchová I., Lodin J., Špička J., Sameš M., Procházka J., Hanuljaková E., et al. Development of the Cerebrospinal Fluid in Early Stage after Hemorrhage in the Central Nervous System. Life. 2021;11:300. doi: 10.3390/life11040300. PubMed DOI PMC

Sobek O., Dušková J. Laboratorní vyšetření likvoru. In: Štětkářová I., editor. Spinální Neurologie. 1st ed. Prague; Maxdorf, Germany: 2019. pp. 57–81.

Zeman D. Praktický Průvodce Laboratorním Vyšetřením Likvoru. 1st ed. Univerzita Palackého; Olomouc, Czech Republic: 2018. pp. 30–32.

Kelbich P., Hejčl A., Staněk I., Svítilová E., Hanuljaková E., Sameš M. Principles of the cytological-energy analysis of the extravascular body fluids. Biochem. Mol. Biol. J. 2017;3:6.

Mrázová K., Zeman D., Bořecká K., Ženková J., Brož P., Mareš J., Hanzalová J., Král V., Krbková L. Recommendation to analysis of cerebrospinal fluid, Klin. Biochem. Metab. 2017;25:43–47.

Kelbich P., Hejčl A., Krulichová I.S., Procházka J., Hanuljaková E., Peruthová J., Koudelková M., Sameš M., Krejsek J. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin. Chem. Lab. Med. (CCLM) 2014;52:1009–1017. doi: 10.1515/cclm-2013-0953. PubMed DOI

Bořecká K., Adam P., Sobek O., Hajduková L., Lánská V., Nekola P. Coefficient of Energy Balance: Effective Tool for Early Differential Diagnosis of CNS Diseases. BioMed Res. Int. 2013;2013:745943. doi: 10.1155/2013/745943. PubMed DOI PMC

Sobek O., Adam P., Koudelková M., Štourač P., Mareš J. The algorithm of CSF examination according to the recommen-dation of the Committee of CSF and Neuroimmunology of the Czech Neurological Society. Ceska A Slov. Neurol. A Neurochir. 2012;75:159–163.

Kelbich P., Slavík S., Jasanská J., Adam P., Hanuljaková E., Jermanová K., Repková E., Šimečková M., Procházková J., Gajdošová R., et al. Evaluations of the energy relations in the CSF compartment by investigation of selected parameters of the glucose metabolism in the CSF. Klin. Biochem. Metab. 1998;6:213–225.

Kelbich P., Radovnický T., Selke-Krulichová I., Lodin J., Matuchová I., Sameš M., Procházka J., Krejsek J., Hanuljaková E., Hejčl A. Can aspartate aminotransferase in the cerebrospinal fluid be a reliable predictive parameter? Brain Sci. 2020;10:698. doi: 10.3390/brainsci10100698. PubMed DOI PMC

Seehusen D.A., Reeves M.M., Fomin D.A. Cerebrospinal Fluid Analysis. Am. Fam. Physician. 2003;68:1103–1108. PubMed

Adam P., Táborský L., Sobek O., Hildebrand T., Kelbich P., Průcha M., Hyánek J. Cerebrospinal fluid. Adv. Clin. Chem. 2001;36:1–62. PubMed

Teng T.-S., Ji A.-L., Ji X.-Y., Li Y.-Z. Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J. Immunol. Res. 2017;2017:9671604. doi: 10.1155/2017/9671604. PubMed DOI PMC

Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.C., Nauseef W.M. Myeloperoxidase: A front-line defender against phagocyted microorganisms. J. Leukoc. Biol. 2013;93:185–198. doi: 10.1189/jlb.0712349. PubMed DOI PMC

Thomas D.C. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol. Lett. 2017;192:88–96. doi: 10.1016/j.imlet.2017.08.016. PubMed DOI

O’Neill L.A., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70. PubMed DOI PMC

Segal A.W. How Neutrophils Kill Microbes. Annu. Rev. Immunol. 2005;23:197–223. doi: 10.1146/annurev.immunol.23.021704.115653. PubMed DOI PMC

Dahlgren C., Karlsson A. Respiratory burst in human neutrophils. J. Immunol. Methods. 1999;232:3–14. doi: 10.1016/S0022-1759(99)00146-5. PubMed DOI

Wilson E., Olcott M.C., Bell R.M., Merrill A.H., Jr., Lambeth J.D. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. J. Biol. Chem. 1986;261:12616–12623. doi: 10.1016/S0021-9258(18)67135-2. PubMed DOI

Borregaard N., Herlin T. Energy Metabolism of Human Neutrophils during Phagocytosis. J. Clin. Investig. 1982;70:550–557. doi: 10.1172/JCI110647. PubMed DOI PMC

Pietikäinen A., Maksimow M., Kauko T., Hurme S., Salmi M., Hytönen J. Cerebrospinal fluid cytokines in Lyme neuroborreliosis. J. Neuroinflamm. 2016;13:273. doi: 10.1186/s12974-016-0745-x. PubMed DOI PMC

Bogovic P., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;16:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC

Koedel U., Fingerle V., Pfister H.-W. Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat. Rev. Neurol. 2015;11:446–456. doi: 10.1038/nrneurol.2015.121. PubMed DOI

Djukic M., Schmidt-Samoa C., Lange P., Spreer A., Neubieser K., Eiffert H., Nau R., Schmidt H. Cerebrospinal fluid findings in adults with acute Lyme neuroborreliosis. J. Neurol. 2011;259:630–636. doi: 10.1007/s00415-011-6221-8. PubMed DOI PMC

van Burgel N.D., Bakels F., Kroes A.C.M., van Dam A.P. Discriminating Lyme Neuroborreliosis from other Neuroin-flammatory Diseases by Levels of CXCL13 in Cerebrospinal Fluid. J. Clin. Microbiol. 2011;49:2027–2030. doi: 10.1128/JCM.00084-11. PubMed DOI PMC

Kaiser R. Tick-Borne Encephalitis. Infect. Dis. Clin. N. Am. 2008;22:561–575. doi: 10.1016/j.idc.2008.03.013. PubMed DOI

Kaiser R. Neuroborreliosis. J. Neurol. 1998;245:247–255. doi: 10.1007/s004150050214. PubMed DOI

Lindquist L., Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–1871. doi: 10.1016/S0140-6736(08)60800-4. PubMed DOI

Oschmann P., Dorndorf W., Hornig C., Schäfer C., Wellensiek H.J., Pflughaupt K.W. Stages and syndromes of neurobor-reliosis. J. Neurol. 1998;245:262–272. doi: 10.1007/s004150050216. PubMed DOI

Holzmann H. Diagnosis of tick-borne encephalitis. Vaccine. 2003;21:S36–S40. doi: 10.1016/S0264-410X(02)00819-8. PubMed DOI

Dumpis U., Crook D., Oksi J. Tick-Borne Encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI

Garcia-Monco J.C., Benach J.L. Lyme Neuroborreliosis. Ann. Neurol. 1995;37:691–702. doi: 10.1002/ana.410370602. PubMed DOI

Tumani H., Nolker G., Reiber H. Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology. 1995;45:1663–1670. doi: 10.1212/WNL.45.9.1663. PubMed DOI

Fisher K.M., Montrief T., Ramzy M., Koyfman A., Long B. Cryptococcal meningitis: A review for emergency clinicians. Intern. Emerg. Med. 2021;16:1031–1042. doi: 10.1007/s11739-020-02619-2. PubMed DOI

Li M., Liu J., Deng X., Gan Q., Wang Y., Xu X., Jiang Y., Peng F. Triple therapy combined with ventriculoperitoneal shunts can improve neurological function and shorten hospitalization time in non-HIV cryptococcal meningitis patients with in-creased intracranial pressure. BMC Infect Dis. 2020;20:844. doi: 10.1186/s12879-020-05510-9. PubMed DOI PMC

Pereira M.E.V.D.C., Gonzalez D.E., Roberto F.B., Foresto R.D., Kirsztajn G.M., Júnior M.D.S.D. Listeria monocytogenes meningoencephalitis in a patient with Systemic Lupus Erythematosus. J. Bras. Nefrol. 2020;42:375–379. doi: 10.1590/2175-8239-jbn-2019-0212. PubMed DOI PMC

Natrajan M., Daniel B.D., Grace G.A. Tuberculous meningitis in children: Clinical management & outcome. Indian J. Med. Res. 2019;150:117–130. doi: 10.4103/ijmr.ijmr_786_17. PubMed DOI PMC

Heemskerk A.D., Donovan J., Thu D.D.A., Marais S., Chaidir L., Dung V.T.M., Centner C.M., Ha V.T.N., Annisa J., Dian S., et al. Improving the microbiological diagnosis of tuberculous meningitis: A prospective, international, multicentre comparison of conventional and modified Ziehl–Neelsen stain, GeneXpert, and culture of cerebrospinal fluid. J. Infect. 2018;77:509–515. doi: 10.1016/j.jinf.2018.09.003. PubMed DOI PMC

Shi T.Y., Zhang Y.F., Shi X.H., Wen X.H., Dong X., Meng J., Li H.Y., Yuan X.X., Zheng Y., Lu Y.W. A rare case of me-ningoencephalitis by Listeria monocytogenes in systemic lupus erythematosus: Case report and review. Clin. Rheumatol. 2018;37:271–275. doi: 10.1007/s10067-017-3783-6. PubMed DOI

Philip N., William T., William D.V. Diagnosis of tuberculous meningitis: Challenges and promises. Malays. J. Pathol. 2015;37:1–9. PubMed

Bicanic T., Harrison T.S. Cryptococcal meningitis. Br. Med. Bull. 2005;72:99–118. doi: 10.1093/bmb/ldh043. PubMed DOI

Mink S., List W., Reimann P., Fraunberger P. CSF-interleukin 6 for early diagnosis of ventriculitis in a broad intensive care setting. Clin. Chem. Lab. Med. (CCLM) 2022;60:e129–e131. doi: 10.1515/cclm-2021-1233. PubMed DOI

Behari S., Kumar A., Sardhara J.C., Singh G., Kanjilal S., Maurya V.P. Malignant Meningitis Associated with Hydrocephalus. Neurol. India. 2021;69:443. doi: 10.4103/0028-3886.332278. PubMed DOI

Wesenhagen K.E.J., Teunissen C.E., Visser P.J., Tijms B.M. Cerebrospinal fluid proteomics and biological heterogeneity in Alzheimer’s disease: A literature review. Crit. Rev. Clin. Lab. Sci. 2019;57:86–98. doi: 10.1080/10408363.2019.1670613. PubMed DOI

Chamberlain M.C. Neoplastic meningitis. Oncologist. 2008;13:967–977. doi: 10.1634/theoncologist.2008-0138. PubMed DOI

O’Connor K.C., Bar-Or A., Hafler D.A. The Neuroimmunology of Multiple Sclerosis: Possible Roles of T and B Lymphocytes in Immunopathogenesis. J. Clin. Immunol. 2001;21:81–92. doi: 10.1023/A:1011064007686. PubMed DOI

Noseworthy J.H., Lucchinetti C., Rodriguez M., Weinshenker B.G. Multiple sclerosis. N. Engl. J. Med. 2000;343:938–952. doi: 10.1056/NEJM200009283431307. PubMed DOI

Magliozzi R., Cross A.H. Can CSF biomarkers predict future MS disease activity and severity? Mult. Scler. 2020;26:582–590. doi: 10.1177/1352458519871818. PubMed DOI

Gajofatto A., Calabrese M., Benedetti M.D., Monaco S. Clinical, MRI, and CSF Markers of Disability Progression in Multiple Sclerosis. Dis. Markers. 2013;35:687–699. doi: 10.1155/2013/484959. PubMed DOI PMC

Chabas D., Ness J., Belman A., Yeh E.A., Kuntz N.L., Gorman M.P., Strober J.B., De Kouchkovsky I., McCulloch C., Chitnis T., et al. Younger children with MS have a distinct CSF inflammatory profile at disease onset. Neurology. 2010;74:399–405. doi: 10.1212/WNL.0b013e3181ce5db0. PubMed DOI PMC

Wang N., Bertalan M.S., Brastianos P.K. Leptomeningeal metastasis from systemic cancer: Review and update on management. Cancer. 2018;124:21–35. doi: 10.1002/cncr.30911. PubMed DOI PMC

Adams M., Doherty C., O’Kane A., Hall S., Forbes R.B., Herron B., McNaboe E.J. Malignant meningitis secondary to oesophageal adenocarcinoma presenting with sensorineural hearing loss: A series of three cases and discussion of the literature. Eur. Arch. Otorhinolaryngol. 2016;273:2481–2486. doi: 10.1007/s00405-015-3842-z. PubMed DOI

Roth P., Weller M. Management of neoplastic meningitis. Chin. Clin. Oncol. 2015;4:26. doi: 10.3978/j.issn.2304-3865.2015.05.02. PubMed DOI

Remer K.A., Reimer T., Brcic M., Jungi T.W. Evidence for involvement of peptidoglycan in the triggering of an oxidative burst by Listeria monocytogenes in phagocytes. Clin. Exp. Immunol. 2005;140:73–80. doi: 10.1111/j.1365-2249.2005.02740.x. PubMed DOI PMC

Piddington D.L., Fang F.C., Laessig T., Cooper A.M., Orme I.M., Buchmeier N.A. Cu, Zn superoxide dismutase of Myco-bacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect. Immun. 2001;69:4980–4987. doi: 10.1128/IAI.69.8.4980-4987.2001. PubMed DOI PMC

Kuhn M., Goebel W. Responses by murine macrophages infected with Listeria monocytogenes crucial for the development of immunity to this pathogen. Immunol. Rev. 1997;158:57–93. doi: 10.1111/j.1600-065X.1997.tb00992.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...