Semi-automated detection of cervical spinal cord compression with the Spinal Cord Toolbox

. 2022 Apr ; 12 (4) : 2261-2279.

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35371944
Odkazy

PubMed 35371944
PubMed Central PMC8923862
DOI 10.21037/qims-21-782
PII: qims-12-04-2261
Knihovny.cz E-zdroje

BACKGROUND: Degenerative cervical spinal cord compression is becoming increasingly prevalent, yet the MRI criteria that define compression are vague, and vary between studies. This contribution addresses the detection of compression by means of the Spinal Cord Toolbox (SCT) and assesses the variability of the morphometric parameters extracted with it. METHODS: Prospective cross-sectional study. Two types of MRI examination, 3 and 1.5 T, were performed on 66 healthy controls and 118 participants with cervical spinal cord compression. Morphometric parameters from 3T MRI obtained by Spinal Cord Toolbox (cross-sectional area, solidity, compressive ratio, torsion) were combined in multivariate logistic regression models with the outcome (binary dependent variable) being the presence of compression determined by two radiologists. Inter-trial (between 3 and 1.5 T) and inter-rater (three expert raters and SCT) variability of morphometric parameters were assessed in a subset of 35 controls and 30 participants with compression. RESULTS: The logistic model combining compressive ratio, cross-sectional area, solidity, torsion and one binary indicator, whether or not the compression was set at level C6/7, demonstrated outstanding compression detection (area under curve =0.947). The single best cut-off for predicted probability calculated using a multiple regression equation was 0.451, with a sensitivity of 87.3% and a specificity of 90.2%. The inter-trial variability was better in Spinal Cord Toolbox (intraclass correlation coefficient was 0.858 for compressive ratio and 0.735 for cross-sectional area) compared to expert raters (mean coefficient for three expert raters was 0.722 for compressive ratio and 0.486 for cross-sectional area). The analysis of inter-rater variability demonstrated general agreement between SCT and three expert raters, as the correlations between SCT and raters were generally similar to those of the raters between one another. CONCLUSIONS: This study demonstrates successful semi-automated compression detection based on four parameters. The inter-trial variability of parameters established through two MRI examinations was conclusively better for Spinal Cord Toolbox compared with that of three experts' manual ratings.

Zobrazit více v PubMed

Smith SS, Stewart ME, Davies BM, Kotter MRN. The Prevalence of Asymptomatic and Symptomatic Spinal Cord Compression on Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Global Spine J 2021;11:597-607. 10.1177/2192568220934496 PubMed DOI PMC

Kovalova I, Kerkovsky M, Kadanka Z, Kadanka Z, Jr, Nemec M, Jurova B, Dusek L, Jarkovsky J, Bednarik J. Prevalence and Imaging Characteristics of Nonmyelopathic and Myelopathic Spondylotic Cervical Cord Compression. Spine (Phila Pa 1976) 2016;41:1908-16. 10.1097/BRS.0000000000001842 PubMed DOI

Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative Cervical Myelopathy: Epidemiology, Genetics, and Pathogenesis. Spine (Phila Pa 1976) 2015;40:E675-93. 10.1097/BRS.0000000000000913 PubMed DOI

Martin AR, De Leener B, Cohen-Adad J, Cadotte DW, Nouri A, Wilson JR, Tetreault L, Crawley AP, Mikulis DJ, Ginsberg H, Fehlings MG. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open 2018;8:e019809. 10.1136/bmjopen-2017-019809 PubMed DOI PMC

Kerkovský M, Bednarík J, Dušek L, Sprláková-Puková A, Urbánek I, Mechl M, Válek V, Kadanka Z. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine (Phila Pa 1976) 2012;37:48-56. 10.1097/BRS.0b013e31820e6c35 PubMed DOI

Martin AR, De Leener B, Cohen-Adad J, Cadotte DW, Kalsi-Ryan S, Lange SF, Tetreault L, Nouri A, Crawley A, Mikulis DJ, Ginsberg H, Fehlings MG. A Novel MRI Biomarker of Spinal Cord White Matter Injury: T2*-Weighted White Matter to Gray Matter Signal Intensity Ratio. AJNR Am J Neuroradiol 2017;38:1266-73. 10.3174/ajnr.A5162 PubMed DOI PMC

Labounek R, Valošek J, Horák T, Svátková A, Bednařík P, Vojtíšek L, Horáková M, Nestrašil I, Lenglet C, Cohen-Adad J, Bednařík J, Hluštík P. HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci Rep 2020;10:17529. 10.1038/s41598-020-70297-3 PubMed DOI PMC

Horak T, Horakova M, Svatkova A, Kadanka Z, Kudlicka P, Valosek J, Rohan T, Kerkovsky M, Vlckova E, Kadanka Z, Deelchand DK, Henry PG, Bednarik J, Bednarik P. In vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression. J Neurotrauma 2021;38:2999-3010. 10.1089/neu.2021.0151 PubMed DOI PMC

Kadanka Z, Jr, Adamova B, Kerkovsky M, Kadanka Z, Dusek L, Jurova B, Vlckova E, Bednarik J. Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav 2017;7:e00797. 10.1002/brb3.797 PubMed DOI PMC

Yue WM, Tan SB, Tan MH, Koh DC, Tan CT. The Torg--Pavlov ratio in cervical spondylotic myelopathy: a comparative study between patients with cervical spondylotic myelopathy and a nonspondylotic, nonmyelopathic population. Spine (Phila Pa 1976) 2001;26:1760-4. 10.1097/00007632-200108150-00006 PubMed DOI

Bednarik J, Kadanka Z, Dusek L, Kerkovsky M, Vohanka S, Novotny O, Urbanek I, Kratochvilova D. Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J 2008;17:421-31. 10.1007/s00586-008-0585-1 PubMed DOI PMC

Wilson JR, Barry S, Fischer DJ, Skelly AC, Arnold PM, Riew KD, Shaffrey CI, Traynelis VC, Fehlings MG. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 2013;38:S37-54. 10.1097/BRS.0b013e3182a7f2e7 PubMed DOI

De Leener B, Lévy S, Dupont SM, Fonov VS, Stikov N, Louis Collins D, Callot V, Cohen-Adad J. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2017;145:24-43. 10.1016/j.neuroimage.2016.10.009 PubMed DOI

Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 2019;184:901-15. 10.1016/j.neuroimage.2018.09.081 PubMed DOI PMC

Valošek J, Labounek R, Horák T, Horáková M, Bednařík P, Keřkovský M, Kočica J, Rohan T, Lenglet C, Cohen-Adad J, Hluštík P, Vlčková E, Kadaňka Z, Jr, Bednařík J, Svatkova A. Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression. Eur J Neurol 2021;28:3784-97. 10.1111/ene.15027 PubMed DOI PMC

Papinutto N, Henry RG. Evaluation of Intra- and Interscanner Reliability of MRI Protocols for Spinal Cord Gray Matter and Total Cross-Sectional Area Measurements. J Magn Reson Imaging 2019;49:1078-90. 10.1002/jmri.26269 PubMed DOI PMC

Ost K, Jacobs WB, Evaniew N, Cohen-Adad J, Anderson D, Cadotte DW. Spinal Cord Morphology in Degenerative Cervical Myelopathy Patients; Assessing Key Morphological Characteristics Using Machine Vision Tools. J Clin Med 2021;10:892. 10.3390/jcm10040892 PubMed DOI PMC

Seif M, David G, Huber E, Vallotton K, Curt A, Freund P. Cervical Cord Neurodegeneration in Traumatic and Non-Traumatic Spinal Cord Injury. J Neurotrauma 2020;37:860-7. 10.1089/neu.2019.6694 PubMed DOI PMC

Martin AR, De Leener B, Cohen-Adad J, Kalsi-Ryan S, Cadotte DW, Wilson JR, Tetreault L, Nouri A, Crawley A, Mikulis DJ, Ginsberg H, Massicotte EM, Fehlings MG. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One 2018;13:e0195733. 10.1371/journal.pone.0195733 PubMed DOI PMC

Grabher P, Mohammadi S, Trachsler A, Friedl S, David G, Sutter R, Weiskopf N, Thompson AJ, Curt A, Freund P. Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci Rep 2016;6:24636. 10.1038/srep24636 PubMed DOI PMC

Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, et al. Generic acquisition protocol for quantitative MRI of the spinal cord. Nat Protoc 2021;16:4611-32. 10.1038/s41596-021-00588-0 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace