Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression

. 2021 Nov ; 28 (11) : 3784-3797. [epub] 20210804

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34288268

Grantová podpora
P41 EB027061 NIBIB NIH HHS - United States
CIHR FDN-143263 CIHR - Canada
P30 NS076408 NINDS NIH HHS - United States

BACKGROUND AND PURPOSE: Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM. METHODS: High-resolution 3 T diffusion MRI was acquired for 103 NMDC and 21 DCM patients compared to 60 healthy controls to reveal diffusion alterations and relationships between tract-specific diffusion metrics and corresponding electrophysiological measures and compression severity. Relationship between the degree of DCM disability, assessed by the modified Japanese Orthopaedic Association scale, and tract-specific microstructural changes in DCM patients was also explored. RESULTS: The study identified diffusion-derived abnormalities in the gray matter, dorsal and lateral tracts congruent with trans-synaptic degeneration and demyelination in chronic degenerative spinal cord compression with more profound alterations in DCM than NMDC. Diffusion metrics were affected in the C3-6 area as well as above the compression level at C3 with more profound rostral deficits in DCM than NMDC. Alterations in lateral motor and dorsal sensory tracts correlated with motor and sensory evoked potentials, respectively, whereas electromyography outcomes corresponded with gray matter microstructure. DCM disability corresponded with microstructure alteration in lateral columns. CONCLUSIONS: Outcomes imply the necessity of high-resolution tract-specific diffusion MRI for monitoring degenerative spinal pathology in longitudinal studies.

Erratum v

PubMed

Zobrazit více v PubMed

Badhiwala JH, Ahuja CS, Akbar MA, et al. Degenerative cervical myelopathy—update and future directions. Nat Rev Neurol. 2020;16:108‐124. PubMed

Bednarik J, Kadanka Z, Dusek L, et al. Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J. 2008;17:421‐431. PubMed PMC

Smith SS, Stewart ME, Davies BM, et al. The prevalence of asymptomatic and symptomatic spinal cord compression on magnetic resonance imaging: a systematic review and meta‐analysis. Global Spine Journal. 2021;11(4):597‐607. PubMed PMC

Kovalova I, Kerkovsky M, Kadanka Z, et al. Prevalence and imaging characteristics of nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine (Phila Pa 1976). 2016;41(24):1908‐1916. PubMed

Adamova B, Bednarik J, Andrasinova T, et al. Does lumbar spinal stenosis increase the risk of spondylotic cervical spinal cord compression? Eur Spine J. 2015;24:2946‐2953. PubMed

Kadanka Z, Adamova B, Kerkovsky M, et al. Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 2017;7:e00797. PubMed PMC

Bednarik J, Kadanka Z, Dusek L, et al. Presymptomatic spondylotic cervical cord compression. Spine (Phila Pa 1976). 2004;29(20):2260‐2269. PubMed

Witiw CD, Mathieu F, Nouri A, et al. Clinico‐radiographic discordance: an evidence‐based commentary on the management of degenerative cervical spinal cord compression in the absence of symptoms or with only mild symptoms of myelopathy. Glob Spine J. 2018;8:527‐534. PubMed PMC

Wilson JR, Barry S, Fischer DJ, et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2013;38:S37‐S54. PubMed

Martin AR, De Leener B, Cohen‐Adad J, et al. A novel MRI biomarker of spinal cord white matter injury: T2*‐weighted white matter to gray matter signal intensity ratio. Am J Neuroradiol. 2017;38:1266‐1273. PubMed PMC

Dong F, Wu Y, Song P, et al. A preliminary study of 3.0‐T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy. Eur Spine J. 2018;27:1839‐1845. PubMed

Shabani S, Kaushal M, Budde MD, et al. Diffusion tensor imaging in cervical spondylotic myelopathy: a review. J Neurosurg Spine. 2020;33:65‐72. PubMed

David G, Mohammadi S, Martin AR, et al. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol. 2019;15:718‐731. PubMed

Seif M, David G, Huber E, et al. Cervical cord neurodegeneration in traumatic and non‐traumatic spinal cord injury. J Neurotrauma. 2020;37:860‐867. PubMed PMC

Martin AR, De Leener B, Cohen‐Adad J, et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One. 2018;13(4):e0195733. PubMed PMC

Martin AR, De Leener B, Cohen‐Adad J, et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open. 2018;8:e019809. PubMed PMC

Keřkovský M, Bednařík J, Jurová B, et al. Spinal cord MR diffusion properties in patients with degenerative cervical cord compression. J Neuroimaging. 2017;27:149‐157. PubMed

Kerkovský M, Bednarík J, Dušek L, et al. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine (Phila Pa 1976). 2012;37(1):48‐56. PubMed

Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259‐267. PubMed PMC

Panagiotaki E, Schneider T, Siow B, et al. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. NeuroImage. 2012;59:2241‐2254. PubMed

Labounek R, Valošek J, Horák T, et al. HARDI‐ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci Rep. 2020;10:17529. PubMed PMC

Behrens TEJ, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion‐weighted MR imaging. Magn Reson Med. 2003;50:1077‐1088. PubMed

Gros C, De Leener B, Badji A, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage. 2019;184:901‐915. PubMed PMC

De Leener B, Fonov VS, Collins DL, Callot V, Stikov N, Cohen‐Adad J. PAM50: unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. NeuroImage. 2018;165:170‐179. PubMed

Lévy S, Benhamou M, Naaman C, et al. White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage. 2015;119:262‐271. PubMed

De Leener B, Lévy S, Dupont SM, et al. SCT: Spinal Cord Toolbox, an open‐source software for processing spinal cord MRI data. NeuroImage. 2017;145:24‐43. PubMed

Mair WGP, Druckman R. The pathology of spinal cord lesions and their relation to the clinical features in protrusion of cervical intervertebral discs (a report of four cases). Brain. 1953;76:70‐91. PubMed

Tetreault L, Kopjar B, Nouri A, et al. The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur Spine J. 2017;26:78‐84. PubMed

Bednařík J, Kadaňka Z, Voháňka S, et al. The value of somatosensory and motor evoked potentials in pre‐clinical spondylotic cervical cord compression. Eur Spine J. 1998;7:493‐500. PubMed PMC

Caruyer E, Lenglet C, Sapiro G, et al. Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn Reson Med. 2013;69:1534‐1540. PubMed PMC

Jenkinson M, Beckmann CF, Behrens TEJ, et al. FSL. NeuroImage. 2012;62:782‐790. PubMed

Ullmann E, Pelletier Paquette JF, Thong WE, et al. Automatic labeling of vertebral levels using a robust template‐based approach. Int J Biomed Imaging. 2014;2014:719520. PubMed PMC

Cohen‐Adad J. Microstructural imaging in the spinal cord and validation strategies. NeuroImage. 2018;182:169‐183. PubMed

Badhiwala JH, Ahuja CS, Akbar MA, et al. Degenerative cervical myelopathy ‐ update and future directions. Nat Rev Neurol. 2020;16(2):108‐124. PubMed

Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. Spine J. 2006;6(6 Suppl):190S‐197S. PubMed

Lee JW, Kim JH, Park JB, et al. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results. Skeletal Radiol. 2011;40:1543‐1551. PubMed

Lindberg PG, Sanchez K, Ozcan F, et al. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur Radiol. 2016;26:733‐742. PubMed

Wen CY, Cui JL, Liu HS, et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy. Radiology. 2014;270:197‐204. PubMed

Facon D, Ozanne A, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26:1587‐1594. PubMed PMC

Grabher P, Mohammadi S, Trachsler A, et al. Voxel‐based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci Rep. 2016;6:24636. PubMed PMC

Budzik J‐F, Balbi V, Le Thuc V, Duhamel A, Assaker R, Cotten A. Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol. 2011;21:426‐433. PubMed

Kowalczyk I, Duggal N, Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain. 2012;135:461‐468. PubMed

Bernabéu‐Sanz Á, Mollá‐Torró JV, López‐Celada S, et al. MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur Radiol. 2020;30:357‐369. PubMed

Zhou FQ, Tan YM, Wu L, Zhuang Y, He LC, Gong HH. Intrinsic functional plasticity of the sensory‐motor network in patients with cervical spondylotic myelopathy. Sci Rep. 2015;5(1):9975. PubMed PMC

Cohen‐Adad J, Wheeler‐Kingshott C. Quantitative MRI of the Spinal Cord. San Diego, CA: Academic Press (Elsevier); 2014.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...