Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
CIHR FDN-143263
CIHR - Canada
P30 NS076408
NINDS NIH HHS - United States
PubMed
34288268
PubMed Central
PMC8530898
DOI
10.1111/ene.15027
Knihovny.cz E-zdroje
- Klíčová slova
- diffusion magnetic resonance imaging, diffusion tensor imaging, spinal cord compression,
- MeSH
- difuzní magnetická rezonance MeSH
- komprese míchy * diagnostické zobrazování MeSH
- krční obratle diagnostické zobrazování MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mícha diagnostické zobrazování MeSH
- nemoci míchy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND AND PURPOSE: Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM. METHODS: High-resolution 3 T diffusion MRI was acquired for 103 NMDC and 21 DCM patients compared to 60 healthy controls to reveal diffusion alterations and relationships between tract-specific diffusion metrics and corresponding electrophysiological measures and compression severity. Relationship between the degree of DCM disability, assessed by the modified Japanese Orthopaedic Association scale, and tract-specific microstructural changes in DCM patients was also explored. RESULTS: The study identified diffusion-derived abnormalities in the gray matter, dorsal and lateral tracts congruent with trans-synaptic degeneration and demyelination in chronic degenerative spinal cord compression with more profound alterations in DCM than NMDC. Diffusion metrics were affected in the C3-6 area as well as above the compression level at C3 with more profound rostral deficits in DCM than NMDC. Alterations in lateral motor and dorsal sensory tracts correlated with motor and sensory evoked potentials, respectively, whereas electromyography outcomes corresponded with gray matter microstructure. DCM disability corresponded with microstructure alteration in lateral columns. CONCLUSIONS: Outcomes imply the necessity of high-resolution tract-specific diffusion MRI for monitoring degenerative spinal pathology in longitudinal studies.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Biomedical Engineering University Hospital Olomouc Czechia
Department of Neurology Faculty of Medicine and Dentistry Palacký University Olomouc Czechia
Department of Neurology University Hospital Brno Brno Czechia
Department of Radiology and Nuclear Medicine University Hospital Brno Brno Czechia
Faculty of Medicine Masaryk University Brno Czechia
Functional Neuroimaging Unit CRIUGM University of Montreal Montreal Quebec Canada
Mila Quebec AI Institute Montreal Quebec Canada
NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal Montreal Quebec Canada
Zobrazit více v PubMed
Badhiwala JH, Ahuja CS, Akbar MA, et al. Degenerative cervical myelopathy—update and future directions. Nat Rev Neurol. 2020;16:108‐124. PubMed
Bednarik J, Kadanka Z, Dusek L, et al. Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur Spine J. 2008;17:421‐431. PubMed PMC
Smith SS, Stewart ME, Davies BM, et al. The prevalence of asymptomatic and symptomatic spinal cord compression on magnetic resonance imaging: a systematic review and meta‐analysis. Global Spine Journal. 2021;11(4):597‐607. PubMed PMC
Kovalova I, Kerkovsky M, Kadanka Z, et al. Prevalence and imaging characteristics of nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine (Phila Pa 1976). 2016;41(24):1908‐1916. PubMed
Adamova B, Bednarik J, Andrasinova T, et al. Does lumbar spinal stenosis increase the risk of spondylotic cervical spinal cord compression? Eur Spine J. 2015;24:2946‐2953. PubMed
Kadanka Z, Adamova B, Kerkovsky M, et al. Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 2017;7:e00797. PubMed PMC
Bednarik J, Kadanka Z, Dusek L, et al. Presymptomatic spondylotic cervical cord compression. Spine (Phila Pa 1976). 2004;29(20):2260‐2269. PubMed
Witiw CD, Mathieu F, Nouri A, et al. Clinico‐radiographic discordance: an evidence‐based commentary on the management of degenerative cervical spinal cord compression in the absence of symptoms or with only mild symptoms of myelopathy. Glob Spine J. 2018;8:527‐534. PubMed PMC
Wilson JR, Barry S, Fischer DJ, et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2013;38:S37‐S54. PubMed
Martin AR, De Leener B, Cohen‐Adad J, et al. A novel MRI biomarker of spinal cord white matter injury: T2*‐weighted white matter to gray matter signal intensity ratio. Am J Neuroradiol. 2017;38:1266‐1273. PubMed PMC
Dong F, Wu Y, Song P, et al. A preliminary study of 3.0‐T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy. Eur Spine J. 2018;27:1839‐1845. PubMed
Shabani S, Kaushal M, Budde MD, et al. Diffusion tensor imaging in cervical spondylotic myelopathy: a review. J Neurosurg Spine. 2020;33:65‐72. PubMed
David G, Mohammadi S, Martin AR, et al. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol. 2019;15:718‐731. PubMed
Seif M, David G, Huber E, et al. Cervical cord neurodegeneration in traumatic and non‐traumatic spinal cord injury. J Neurotrauma. 2020;37:860‐867. PubMed PMC
Martin AR, De Leener B, Cohen‐Adad J, et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One. 2018;13(4):e0195733. PubMed PMC
Martin AR, De Leener B, Cohen‐Adad J, et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open. 2018;8:e019809. PubMed PMC
Keřkovský M, Bednařík J, Jurová B, et al. Spinal cord MR diffusion properties in patients with degenerative cervical cord compression. J Neuroimaging. 2017;27:149‐157. PubMed
Kerkovský M, Bednarík J, Dušek L, et al. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine (Phila Pa 1976). 2012;37(1):48‐56. PubMed
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259‐267. PubMed PMC
Panagiotaki E, Schneider T, Siow B, et al. Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. NeuroImage. 2012;59:2241‐2254. PubMed
Labounek R, Valošek J, Horák T, et al. HARDI‐ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci Rep. 2020;10:17529. PubMed PMC
Behrens TEJ, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion‐weighted MR imaging. Magn Reson Med. 2003;50:1077‐1088. PubMed
Gros C, De Leener B, Badji A, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage. 2019;184:901‐915. PubMed PMC
De Leener B, Fonov VS, Collins DL, Callot V, Stikov N, Cohen‐Adad J. PAM50: unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. NeuroImage. 2018;165:170‐179. PubMed
Lévy S, Benhamou M, Naaman C, et al. White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage. 2015;119:262‐271. PubMed
De Leener B, Lévy S, Dupont SM, et al. SCT: Spinal Cord Toolbox, an open‐source software for processing spinal cord MRI data. NeuroImage. 2017;145:24‐43. PubMed
Mair WGP, Druckman R. The pathology of spinal cord lesions and their relation to the clinical features in protrusion of cervical intervertebral discs (a report of four cases). Brain. 1953;76:70‐91. PubMed
Tetreault L, Kopjar B, Nouri A, et al. The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur Spine J. 2017;26:78‐84. PubMed
Bednařík J, Kadaňka Z, Voháňka S, et al. The value of somatosensory and motor evoked potentials in pre‐clinical spondylotic cervical cord compression. Eur Spine J. 1998;7:493‐500. PubMed PMC
Caruyer E, Lenglet C, Sapiro G, et al. Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn Reson Med. 2013;69:1534‐1540. PubMed PMC
Jenkinson M, Beckmann CF, Behrens TEJ, et al. FSL. NeuroImage. 2012;62:782‐790. PubMed
Ullmann E, Pelletier Paquette JF, Thong WE, et al. Automatic labeling of vertebral levels using a robust template‐based approach. Int J Biomed Imaging. 2014;2014:719520. PubMed PMC
Cohen‐Adad J. Microstructural imaging in the spinal cord and validation strategies. NeuroImage. 2018;182:169‐183. PubMed
Badhiwala JH, Ahuja CS, Akbar MA, et al. Degenerative cervical myelopathy ‐ update and future directions. Nat Rev Neurol. 2020;16(2):108‐124. PubMed
Baptiste DC, Fehlings MG. Pathophysiology of cervical myelopathy. Spine J. 2006;6(6 Suppl):190S‐197S. PubMed
Lee JW, Kim JH, Park JB, et al. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results. Skeletal Radiol. 2011;40:1543‐1551. PubMed
Lindberg PG, Sanchez K, Ozcan F, et al. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur Radiol. 2016;26:733‐742. PubMed
Wen CY, Cui JL, Liu HS, et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy. Radiology. 2014;270:197‐204. PubMed
Facon D, Ozanne A, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26:1587‐1594. PubMed PMC
Grabher P, Mohammadi S, Trachsler A, et al. Voxel‐based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci Rep. 2016;6:24636. PubMed PMC
Budzik J‐F, Balbi V, Le Thuc V, Duhamel A, Assaker R, Cotten A. Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur Radiol. 2011;21:426‐433. PubMed
Kowalczyk I, Duggal N, Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain. 2012;135:461‐468. PubMed
Bernabéu‐Sanz Á, Mollá‐Torró JV, López‐Celada S, et al. MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur Radiol. 2020;30:357‐369. PubMed
Zhou FQ, Tan YM, Wu L, Zhuang Y, He LC, Gong HH. Intrinsic functional plasticity of the sensory‐motor network in patients with cervical spondylotic myelopathy. Sci Rep. 2015;5(1):9975. PubMed PMC
Cohen‐Adad J, Wheeler‐Kingshott C. Quantitative MRI of the Spinal Cord. San Diego, CA: Academic Press (Elsevier); 2014.
Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox
Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review
Semi-automated detection of cervical spinal cord compression with the Spinal Cord Toolbox