Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
R00 EB016689
NIBIB NIH HHS - United States
K23 NS104211
NINDS NIH HHS - United States
P30 NS076408
NINDS NIH HHS - United States
R01 NS133305
NINDS NIH HHS - United States
R61 NS118651
NINDS NIH HHS - United States
R01 NS128478
NINDS NIH HHS - United States
R21 EB031211
NIBIB NIH HHS - United States
R01 NS109450
NINDS NIH HHS - United States
K24 NS126781
NINDS NIH HHS - United States
K01 EB030039
NIBIB NIH HHS - United States
K01 NS105160
NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
L30 NS108301
NINDS NIH HHS - United States
R01 NS109114
NINDS NIH HHS - United States
R01 EB027779
NIBIB NIH HHS - United States
PubMed
38746371
PubMed Central
PMC11092490
DOI
10.1101/2024.04.29.591421
PII: 2024.04.29.591421
Knihovny.cz E-zdroje
- Klíčová slova
- BMI, body size, brain, human, in vivo neuroimaging, magnetic resonance imaging, spinal cord, structure,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Aix Marseille Univ CNRS CRMBM Marseille France
APHM Hopital Universitaire Timone CEMEREM Marseille France
Canon Medical Systems srl Rome Italy
Centre de recherche du CHU Sainte Justine Université de Montréal Montreal QC Canada
Centre for Human Brain Health University of Birmingham Birmingham UK
Centre for Medical Image Computing University College London London UK
Centre of Precision Rehabilitation for Spinal Pain University of Birmingham Birmingham UK
Clement J Zablocki Veteran's Affairs Medical Center Milwaukee WI USA
CREF Museo storico della fisica e Centro studi e ricerche Enrico Fermi Rome Italy
Department for Systems Neuroscience University Medical Center Hamburg Eppendorf Hamburg Germany
Department of Biomedical Engineering Vanderbilt University Nashville TN USA
Department of Biophysics Faculty of Medicine Masaryk University Brno Czech Republic
Department of Brain and Behavioural Sciences University of Pavia Pavia Italy
Department of Neurological Surgery University of California Davis CA USA
Department of Neurology University Hospital Brno Brno Czech Republic
Department of Neurosurgery Medical College of Wisconsin Milwaukee WI USA
Department of Neurosurgery University of Oklahoma Oklahoma City OK USA
Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
Department of Physics and Astronomy University of British Columbia Vancouver BC Canada
Department of Psychiatry Baylor College of Medicine Houston Texas USA
Department of Psychology University of Chinese Academy of Sciences Beijing 100049 China
Department of Radiology and Medical Informatics Faculty of Medicine University of Geneva Switzerland
Department of Radiology Baylor College of Medicine Houston Texas USA
Department of Radiology Beijing Tiantan Hospital Capital Medical University China
Department of Radiology Faculty of Medicine University of British Columbia Vancouver BC Canada
Department of Radiology Northwestern University Chicago IL 60611 USA
Department of Radiology Swiss Paraplegic Centre Nottwil Switzerland
Department of Radiology Toho University Omori Medical Center Tokyo Japan
Division of Neurology Faculty of Medicine University of British Columbia Vancouver BC Canada
e Health Center Universitat Oberta de Catalunya Barcelona Spain
Faculty of Medicine Masaryk University Brno Czech Republic
Fondation Campus Biotech Geneva Genève Switzerland
Functional Neuroimaging Unit CRIUGM University of Montreal Montreal Canada
Harvard Medical School Boston Massachusetts USA
IBM Poland Department of Content Design Cracow Poland
Institute for Mental Health University of Birmingham Birmingham UK
Institute of Nanotechnology CNR Rome Italy
International Collaboration on Repair Discoveries University of British Columbia Vancouver Canada
IRCCS Santa Lucia Foundation Neuroimaging Laboratory Rome Italy
Mila Quebec AI Institute Montreal QC Canada
MR Clinical Science Philips Healthcare Canada Mississauga Canada
Neuro 10 Institute Ecole polytechnique fédérale de Lausanne Geneva Switzerland
NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal Montreal QC Canada
Neuroradiology Unit IRCCS Humanitas Research Hospital Via Alessandro Manzoni 56 20089 Rozzano Italy
School of Biomedical Sciences Faculty of Medicine The University of Queensland St Lucia Australia
Stanford University Stanford CA USA
The University of Tokyo Hospital Radiology Center Tokyo Japan
Université de Strasbourg CNRS ICube Strasbourg France
Vall d'Hebron Institute of Oncology Vall d'Hebron Barcelona Hospital Campus Barcelona Spain
Zobrazit více v PubMed
Butler M.G., Miller B.S., Romano A., Ross J., Abuzzahab M.J., Backeljauw P., Bamba V., Bhangoo A., Mauras N., and Geffner M. (2022). Genetic conditions of short stature: A review of three classic examples. Front. Endocrinol. 13, 1011960. 10.3389/fendo.2022.1011960. PubMed DOI PMC
Pierpont E.I., Bennett A.M., Schoyer L., Stronach B., Anschutz A., Borrie S.C., Briggs B., Burkitt-Wright E., Castel P., Cirstea I.C., et al. (2024). The 8th International RASopathies Symposium: Expanding research and care practice through global collaboration and advocacy. Am. J. Med. Genet. A 194, e63477. 10.1002/ajmg.a.63477. PubMed DOI PMC
Boesch S.M., and Indelicato E. (2021). Body Mass Index and Height in Friedreich Ataxia: What Do We Know? Neurol Genet 7, e637. 10.1212/NXG.0000000000000637. PubMed DOI PMC
Patel M., McCormick A., Tamaroff J., Dunn J., Mitchell J.A., Lin K.Y., Farmer J., Rummey C., Perlman S.L., Delatycki M.B., et al. (2021). Body Mass Index and Height in the Friedreich Ataxia Clinical Outcome Measures Study. Neurol Genet 7, e638. 10.1212/NXG.0000000000000638. PubMed DOI PMC
Lin H.-Y., Lee C.-L., Chiu P.C., Niu D.-M., Tsai F.-J., Hwu W.-L., Lin S.J., Lin J.-L., Chang T.-M., Chuang C.-K., et al. (2019). Relationships among Height, Weight, Body Mass Index, and Age in Taiwanese Children with Different Types of Mucopolysaccharidoses. Diagnostics (Basel) 9. 10.3390/diagnostics9040148. PubMed DOI PMC
Muschol N.M., Pape D., Kossow K., Ullrich K., Arash-Kaps L., Hennermann J.B., Stücker R., and Breyer S.R. (2019). Growth charts for patients with Sanfilippo syndrome (Mucopolysaccharidosis type III). Orphanet J. Rare Dis. 14, 93. 10.1186/s13023-019-1065-x. PubMed DOI PMC
Patel P., Suzuki Y., Maeda M., Yasuda E., Shimada T., Orii K.E., Orii T., and Tomatsu S. (2014). Growth charts for patients with Hunter syndrome. Mol Genet Metab Rep 1, 5–18. 10.1016/j.ymgmr.2013.10.001. PubMed DOI PMC
Harding I.H., Chopra S., Arrigoni F., Boesch S., Brunetti A., Cocozza S., Corben L.A., Deistung A., Delatycki M., Diciotti S., et al. (2021). Brain structure and degeneration staging in friedreich ataxia: Magnetic resonance imaging volumetrics from the ENIGMA-ataxia working group. Ann. Neurol. 90, 570–583. 10.1002/ana.26200. PubMed DOI PMC
Joers J.M., Adanyeguh I.M., Deelchand D.K., Hutter D.H., Eberly L.E., Iltis I., Bushara K.O., Lenglet C., and Henry P.-G. (2022). Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 4, fcac246. 10.1093/braincomms/fcac246. PubMed DOI PMC
Rezende T.J.R., Adanyeguh I.M., Arrigoni F., Bender B., Cendes F., Corben L.A., Deistung A., Delatycki M., Dogan I., Egan G.F., et al. (2023). Progressive spinal cord degeneration in Friedreich’s ataxia: Results from ENIGMA-ataxia. Mov. Disord. 38, 45–56. 10.1002/mds.29261. PubMed DOI PMC
Kovac V., Shapiro E.G., Rudser K.D., Mueller B.A., Eisengart J.B., Delaney K.A., Ahmed A., King K.E., Yund B.D., Cowan M.J., et al. (2022). Quantitative brain MRI morphology in severe and attenuated forms of mucopolysaccharidosis type I. Mol. Genet. Metab. 135, 122–132. 10.1016/j.ymgme.2022.01.001. PubMed DOI PMC
Provenzale J.M., Nestrasil I., Chen S., Kan S.-H., Le S.Q., Jens J.K., Snella E.M., Vondrak K.N., Yee J.K., Vite C.H., et al. (2015). Diffusion tensor imaging and myelin composition analysis reveal abnormal myelination in corpus callosum of canine mucopolysaccharidosis I. Exp. Neurol. 273, 1–10. 10.1016/j.expneurol.2015.07.021. PubMed DOI PMC
Yund B., Rudser K., Ahmed A., Kovac V., Nestrasil I., Raiman J., Mamak E., Harmatz P., Steiner R., Lau H., et al. (2015). Cognitive, medical, and neuroimaging characteristics of attenuated mucopolysaccharidosis type II. Mol. Genet. Metab. 114, 170–177. 10.1016/j.ymgme.2014.12.299. PubMed DOI PMC
MacLarnon A. (1996). The scaling of gross dimensions of the spinal cord in primates and other species. J. Hum. Evol. 30, 71–87. 10.1006/jhev.1996.0005. DOI
MacLarnon A. (1995). The distribution of spinal cord tissues and locomotor adaptation in primates. J. Hum. Evol. 29, 463–482. 10.1006/jhev.1995.1069. DOI
MacLarnon A. (1996). The evolution of the spinal cord in primates: evidence from the foramen magnum and the vertebral canal. J. Hum. Evol. 30, 121–138. 10.1006/jhev.1996.0009. DOI
Kameyama T., Hashizume Y., Ando T., and Takahashi A. (1994). Morphometry of the normal cadaveric cervical spinal cord. Spine 19, 2077–2081. 10.1097/00007632-199409150-00013. PubMed DOI
Engl C., Schmidt P., Arsic M., Boucard C.C., Biberacher V., Röttinger M., Etgen T., Nunnemann S., Koutsouleris N., Reiser M., et al. (2013). Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI. Neuroradiology 55, 963–970. 10.1007/s00234-013-1204-3. PubMed DOI
Alfaro-Almagro F., Jenkinson M., Bangerter N.K., Andersson J.L.R., Griffanti L., Douaud G., Sotiropoulos S.N., Jbabdi S., Hernandez-Fernandez M., Vallee E., et al. (2018). Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424. 10.1016/j.neuroimage.2017.10.034. PubMed DOI PMC
Littlejohns T.J., Holliday J., Gibson L.M., Garratt S., Oesingmann N., Alfaro-Almagro F., Bell J.D., Boultwood C., Collins R., Conroy M.C., et al. (2020). The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Preprint, 10.1038/s41467–020-15948–9 10.1038/s41467-020-15948-9. PubMed DOI PMC
Bédard S., and Cohen-Adad J. (2022). Automatic measure and normalization of spinal cord cross-sectional area using the pontomedullary junction. Front. Neuroimaging 1. 10.3389/fnimg.2022.1031253. PubMed DOI PMC
Papinutto N., Asteggiano C., Bischof A., Gundel T.J., Caverzasi E., Stern W.A., Bastianello S., Hauser S.L., and Henry R.G. (2020). Intersubject Variability and Normalization Strategies for Spinal Cord Total Cross-Sectional and Gray Matter Areas. J. Neuroimaging 30, 110–118. 10.1111/jon.12666. PubMed DOI PMC
Kronlage M., Schwehr V., Schwarz D., Godel T., Heiland S., Bendszus M., and Bäumer P. (2019). Magnetic Resonance Neurography : Normal Values and Demographic Determinants of Nerve Caliber and T2 Relaxometry in 60 healthy individuals. Clin. Neuroradiol. 29, 19–26. 10.1007/s00062-017-0633-5. PubMed DOI
Cohen-Adad J., Alonso-Ortiz E., Abramovic M., Arneitz C., Atcheson N., Barlow L., Barry R.L., Barth M., Battiston M., Büchel C., et al. (2021). Generic acquisition protocol for quantitative MRI of the spinal cord. Nat. Protoc. 16, 4611–4632. 10.1038/s41596-021-00588-0. PubMed DOI PMC
Cohen-Adad J., Alonso-Ortiz E., Abramovic M., Arneitz C., Atcheson N., Barlow L., Barry R.L., Barth M., Battiston M., Büchel C., et al. (2021). Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Sci Data 8, 219. 10.1038/s41597-021-01044-0. PubMed DOI PMC
Levitan I.B., and Kaczmarek L.K. (2002). The Neuron: Cell and Molecular Biology (Oxford University Press; ).
Susuki K. (2010). Myelin: a specialized membrane for cell communication. Nature Education 3, 59.
Aboitiz F., Scheibel A.B., Fisher R.S., and Zaidel E. (1992). Fiber composition of the human corpus callosum. Brain Res. 598, 143–153. 10.1016/0006-8993(92)90178-c. PubMed DOI
Duval T., Saliani A., Nami H., Nanci A., Stikov N., Leblond H., and Cohen-Adad J. (2019). Axons morphometry in the human spinal cord. Neuroimage 185, 119–128. 10.1016/j.neuroimage.2018.10.033. PubMed DOI
Saliani A., Perraud B., Duval T., Stikov N., Rossignol S., and Cohen-Adad J. (2017). Axon and Myelin Morphology in Animal and Human Spinal Cord. Front. Neuroanat. 11, 129. 10.3389/fnana.2017.00129. PubMed DOI PMC
Veraart J., Nunes D., Rudrapatna U., Fieremans E., Jones D.K., Novikov D.S., and Shemesh N. (2020). Noninvasive quantification of axon radii using diffusion MRI. Elife 9, e49855. 10.7554/eLife.49855. PubMed DOI PMC
Rushton W.A.H. (1951). A theory of the effects of fibre size in medullated nerve. J. Physiol. 115, 101–122. 10.1113/jphysiol.1951.sp004655. PubMed DOI PMC
Zalc B. (2006). The acquisition of myelin: a success story. Novartis Found. Symp. 276, 15–21; discussion 21–25, 54–57, 275–281. 10.1002/9780470032244.ch3. PubMed DOI
Zalc B. (2016). The acquisition of myelin: An evolutionary perspective. Brain Res. 1641, 4–10. 10.1016/j.brainres.2015.09.005. PubMed DOI
Fösleitner O., Schwehr V., Godel T., Preisner F., Bäumer P., Heiland S., Bendszus M., and Kronlage M. (2022). Magnetization Transfer Ratio of Peripheral Nerve and Skeletal Muscle. Clin. Neuroradiol. 32, 557–564. 10.1007/s00062-021-01067-5. PubMed DOI PMC
Giedd J.N., Snell J.W., Lange N., Rajapakse J.C., Casey B.J., Kozuch P.L., Vaituzis A.C., Vauss Y.C., Hamburger S.D., Kaysen D., et al. (1996). Quantitative Magnetic Resonance Imaging of Human Brain Development: Ages 4–18. Cereb. Cortex 6, 551–559. 10.1093/cercor/6.4.551. PubMed DOI
Papinutto N., Schlaeger R., Panara V., Zhu A.H., Caverzasi E., Stern W.A., Hauser S.L., and Henry R.G. (2015). Age, Gender and Normalization Covariates for Spinal Cord Gray Matter and Total Cross-Sectional Areas at Cervical and Thoracic Levels: A 2D Phase Sensitive Inversion Recovery Imaging Study. Preprint, 10.1371/journal.pone.0118576 10.1371/journal.pone.0118576. PubMed DOI PMC
Peters R. (2006). Ageing and the brain: This article is part of a series on ageing edited by Professor Chris Bulpitt. Postgrad. Med. J. 82, 84–88. 10.1136/pgmj.2005.036665. PubMed DOI PMC
Thambisetty M., Wan J., Carass A., An Y., Prince J.L., and Resnick S.M. (2010). Longitudinal changes in cortical thickness associated with normal aging. Preprint, 10.1016/j.neuroimage.2010.04.258 10.1016/j.neuroimage.2010.04.258. PubMed DOI PMC
Fjell A.M., Westlye L.T., Grydeland H., Amlien I., Espeseth T., Reinvang I., Raz N., Holland D., Dale A.M., Walhovd K.B., et al. (2013). Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol. Aging 34, 2239–2247. 10.1016/j.neurobiolaging.2013.04.006. PubMed DOI PMC
Heymsfield S.B., Chirachariyavej T., Rhyu I.J., Roongpisuthipong C., Heo M., and Pietrobelli A. (2009). Differences between brain mass and body weight scaling to height: potential mechanism of reduced mass-specific resting energy expenditure of taller adults. J. Appl. Physiol. 106, 40–48. 10.1152/japplphysiol.91123.2008. PubMed DOI PMC
Callaghan M.F., Freund P., Draganski B., Anderson E., Cappelletti M., Chowdhury R., Diedrichsen J., Fitzgerald T.H.B., Smittenaar P., Helms G., et al. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol. Aging 35, 1862–1872. 10.1016/j.neurobiolaging.2014.02.008. PubMed DOI PMC
Zhang C., Zhou M., Shiraishi N., and Goto N. (1996). Morphometric Analysis of Age-related Changes in the Human Cervical Spinal Cord. The Showa University Journal of Medical Sciences 8, 29–38. 10.15369/sujms1989.8.29. DOI
Weitzenkamp D.A., Jones R.H., Whiteneck G.G., and Young D.A. (2001). Ageing with spinal cord injury: cross-sectional and longitudinal effects. Spinal Cord 39, 301–309. 10.1038/sj.sc.3101146. PubMed DOI
Zhou M., Goto N., Zhang C., and Tang W. (1996). Aging process of the human lumbar spinal cord: A morphometric analysis. Neuropathology 16, 106–111. 10.1111/j.1440-1789.1996.tb00164.x. DOI
Miller K.L., Alfaro-Almagro F., Bangerter N.K., Thomas D.L., Yacoub E., Xu J., Bartsch A.J., Jbabdi S., Sotiropoulos S.N., Andersson J.L.R., et al. (2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536. 10.1038/nn.4393. PubMed DOI PMC
Baaré W.F., Hulshoff Pol H.E., Boomsma D.I., Posthuma D., de Geus E.J., Schnack H.G., van Haren N.E., van Oel C.J., and Kahn R.S. (2001). Quantitative genetic modeling of variation in human brain morphology. Cereb. Cortex 11, 816–824. 10.1093/cercor/11.9.816. PubMed DOI
Willerman L., Schultz R., Neal Rutledge J., and Bigler E.D. (1991). In vivo brain size and intelligence. Intelligence 15, 223–228. 10.1016/0160-2896(91)90031-8. DOI
Valošek J., Bédard S., Keřkovský M., Rohan T., and Cohen-Adad J. (2024). A database of the healthy human spinal cord morphometry in the PAM50 template space. Imaging Neuroscience 2, 1–15. 10.1162/imag_a_00075. DOI
Purves D., Augustine G.J., Fitzpatrick D., Katz L.C., LaMantia A.-S., McNamara J.O., and Mark Williams S. (2001). Projections from the Cerebellum (Sinauer Associates; ).
Chandar K., and Freeman B.K. (2014). Spinal Cord Anatomy. In Encyclopedia of the Neurological Sciences (Second Edition), Aminoff M. J. and Daroff R. B., eds. (Academic Press; ), pp. 254–263. 10.1016/B978-0-12-385157-4.01176-3. DOI
Schmierer K., Scaravilli F., Altmann D.R., Barker G.J., and Miller D.H. (2004). Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 56, 407–415. 10.1002/ana.20202. PubMed DOI
Fatemi A., Smith S.A., Dubey P., Zackowski K.M., Bastian A.J., van Zijl P.C., Moser H.W., Raymond G.V., and Golay X. (2005). Magnetization transfer MRI demonstrates spinal cord abnormalities in adrenomyeloneuropathy. Neurology 64, 1739–1745. 10.1212/01.WNL.0000164458.02141.06. PubMed DOI
Lukas C., Sombekke M.H., Bellenberg B., Hahn H.K., Popescu V., Bendfeldt K., Radue E.W., Gass A., Borgwardt S.J., Kappos L., et al. (2013). Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology 269, 542–552. 10.1148/radiol.13122566. PubMed DOI
de Albuquerque M., Branco L.M.T., Rezende T.J.R., de Andrade H.M.T., Nucci A., and França M.C. Jr (2017). Longitudinal evaluation of cerebral and spinal cord damage in Amyotrophic Lateral Sclerosis. Neuroimage Clin 14, 269–276. 10.1016/j.nicl.2017.01.024. PubMed DOI PMC
Querin G., El Mendili M.M., Lenglet T., Delphine S., Marchand-Pauvert V., Benali H., and Pradat P.-F. (2017). Spinal cord multi-parametric magnetic resonance imaging for survival prediction in amyotrophic lateral sclerosis. Eur. J. Neurol. 24, 1040–1046. PubMed
Lema A., Bishop C., Malik O., Mattoscio M., Ali R., Nicholas R., Muraro P.A., Matthews P.M., Waldman A.D., and Newbould R.D. (2017). A Comparison of Magnetization Transfer Methods to Assess Brain and Cervical Cord Microstructure in Multiple Sclerosis. J. Neuroimaging 27, 221–226. 10.1111/jon.12377. PubMed DOI
David G., Mohammadi S., Martin A.R., Cohen-Adad J., Weiskopf N., Thompson A., and Freund P. (2019). Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat. Rev. Neurol. 15, 718–731. 10.1038/s41582-019-0270-5. PubMed DOI
Huffnagel I.C., van Ballegoij W.J.C., Vos J.M.B.W., Kemp S., Caan M.W.A., and Engelen M. (2019). Longitudinal diffusion MRI as surrogate outcome measure for myelopathy in adrenoleukodystrophy. Neurology 93, e2133–e2143. 10.1212/WNL.0000000000008572. PubMed DOI
Badhiwala J.H., Ahuja C.S., Akbar M.A., Witiw C.D., Nassiri F., Furlan J.C., Curt A., Wilson J.R., and Fehlings M.G. (2020). Degenerative cervical myelopathy — update and future directions. Preprint, 10.1038/s41582–019-0303–0 10.1038/s41582-019-0303-0. PubMed DOI
Pisharady P.K., Eberly L.E., Cheong I., Manousakis G., Guliani G., Clark H.B., Bathe M., Walk D., and Lenglet C. (2020). Tract-specific analysis improves sensitivity of spinal cord diffusion MRI to cross-sectional and longitudinal changes in amyotrophic lateral sclerosis. Commun Biol 3, 370. 10.1038/s42003-020-1093-z. PubMed DOI PMC
van de Stadt S.I.W., van Ballegoij W.J.C., Labounek R., Huffnagel I.C., Kemp S., Nestrasil I., and Engelen M. (2020). Spinal cord atrophy as a measure of severity of myelopathy in adrenoleukodystrophy. J. Inherit. Metab. Dis. 43, 852–860. 10.1002/jimd.12226. PubMed DOI PMC
Hernandez A.L.C.C., Rezende T.J.R., Martinez A.R.M., de Brito M.R., and França M.C. Jr (2022). Tract-specific spinal cord diffusion tensor imaging in Friedreich’s ataxia. Mov. Disord. 37, 354–364. 10.1002/mds.28841. PubMed DOI
Martin A.R., De Leener B., Cohen-Adad J., Cadotte D.W., Nouri A., Wilson J.R., Tetreault L., Crawley A.P., Mikulis D.J., Ginsberg H., et al. (2018). Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open 8, e019809. 10.1136/bmjopen-2017-019809. PubMed DOI PMC
Labounek R., Valošek J., Horák T., Svátková A., Bednařík P., Vojtíšek L., Horáková M., Nestrašil I., Lenglet C., Cohen-Adad J., et al. (2020). HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci. Rep. 10, 17529. 10.1038/s41598-020-70297-3. PubMed DOI PMC
Valošek J., Labounek R., Horák T., Horáková M., Bednařík P., Keřkovský M., Kočica J., Rohan T., Lenglet C., Cohen-Adad J., et al. (2021). Diffusion MRI reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression. Eur. J. Neurol. 28, 3784–3797. 10.1111/ene.15027. PubMed DOI PMC
Fox N.C., Warrington E.K., Freeborough P.A., Hartikainen P., Kennedy A.M., Stevens J.M., and Rossor M.N. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain 119 ( Pt 6), 2001–2007. 10.1093/brain/119.6.2001. PubMed DOI
Aylward E.H., Codori A.M., Rosenblatt A., Sherr M., Brandt J., Stine O.C., Barta P.E., Pearlson G.D., and Ross C.A. (2000). Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov. Disord. 15, 552–560. 10.1002/1531-8257(200005)15:3<552::AID-MDS1020>3.0.CO;2-P. PubMed DOI
Rovira A., Grivé E., Pedraza S., Rovira A., and Alonso J. (2001). Magnetization transfer ratio values and proton MR spectroscopy of normal-appearing cerebral white matter in patients with liver cirrhosis. AJNR Am. J. Neuroradiol. 22, 1137–1142. PubMed PMC
Kabani N.J., Sled J.G., and Chertkow H. (2002). Magnetization transfer ratio in mild cognitive impairment and dementia of Alzheimer’s type. Neuroimage 15, 604–610. 10.1006/nimg.2001.0992. PubMed DOI
Reading S.A.J., Yassa M.A., Bakker A., Dziorny A.C., Gourley L.M., Yallapragada V., Rosenblatt A., Margolis R.L., Aylward E.H., Brandt J., et al. (2005). Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res. 140, 55–62. 10.1016/j.pscychresns.2005.05.011. PubMed DOI
Rosano C., Kuller L.H., Chung H., Arnold A.M., Longstreth W.T. Jr, and Newman A.B. (2005). Subclinical brain magnetic resonance imaging abnormalities predict physical functional decline in high-functioning older adults. J. Am. Geriatr. Soc. 53, 649–654. 10.1111/j.1532-5415.2005.53214.x. PubMed DOI
Rosas H.D., Tuch D.S., Hevelone N.D., Zaleta A.K., Vangel M., Hersch S.M., and Salat D.H. (2006). Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov. Disord. 21, 1317–1325. 10.1002/mds.20979. PubMed DOI
Anik Y., Iseri P., Demirci A., Komsuoglu S., and Inan N. (2007). Magnetization transfer ratio in early period of Parkinson disease. Acad. Radiol. 14, 189–192. 10.1016/j.acra.2006.11.005. PubMed DOI
Ringman J.M., O’Neill J., Geschwind D., Medina L., Apostolova L.G., Rodriguez Y., Schaffer B., Varpetian A., Tseng B., Ortiz F., et al. (2007). Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 130, 1767–1776. 10.1093/brain/awm102. PubMed DOI
Hall A.M., Moore R.Y., Lopez O.L., Kuller L., and Becker J.T. (2008). Basal forebrain atrophy is a presymptomatic marker for Alzheimer’s disease. Alzheimers. Dement. 4, 271–279. 10.1016/j.jalz.2008.04.005. PubMed DOI PMC
Wade A., Jacobs P., and Morton A.J. (2008). Atrophy and degeneration in sciatic nerve of presymptomatic mice carrying the Huntington’s disease mutation. Brain Res. 1188, 61–68. 10.1016/j.brainres.2007.06.059. PubMed DOI
Appelman A.P.A., Exalto L.G., van der Graaf Y., Biessels G.J., Mali W.P.T.M., and Geerlings M.I. (2009). White matter lesions and brain atrophy: more than shared risk factors? A systematic review. Cerebrovasc. Dis. 28, 227–242. 10.1159/000226774. PubMed DOI
Ginestroni A., Battaglini M., Della Nave R., Moretti M., Tessa C., Giannelli M., Caffarra P., Nacmias B., Bessi V., Sorbi S., et al. (2009). Early structural changes in individuals at risk of familial Alzheimer’s disease: a volumetry and magnetization transfer MR imaging study. J. Neurol. 256, 925–932. 10.1007/s00415-009-5044-3. PubMed DOI
Rosano C., Sigurdsson S., Siggeirsdottir K., Phillips C.L., Garcia M., Jonsson P.V., Eiriksdottir G., Newman A.B., Harris T.B., van Buchem M.A., et al. (2010). Magnetization transfer imaging, white matter hyperintensities, brain atrophy and slower gait in older men and women. Neurobiol. Aging 31, 1197–1204. 10.1016/j.neurobiolaging.2008.08.004. PubMed DOI PMC
Hayakawa Y.K., Sasaki H., Takao H., Mori H., Hayashi N., Kunimatsu A., Aoki S., and Ohtomo K. (2013). Structural brain abnormalities in women with subclinical depression, as revealed by voxel-based morphometry and diffusion tensor imaging. J. Affect. Disord. 144, 263–268. 10.1016/j.jad.2012.10.023. PubMed DOI
Asken B.M., DeKosky S.T., Clugston J.R., Jaffee M.S., and Bauer R.M. (2018). Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review. Brain Imaging Behav. 12, 585–612. 10.1007/s11682-017-9708-9. PubMed DOI
Kinnunen K.M., Cash D.M., Poole T., Frost C., Benzinger T.L.S., Ahsan R.L., Leung K.K., Cardoso M.J., Modat M., Malone I.B., et al. (2018). Presymptomatic atrophy in autosomal dominant Alzheimer’s disease: A serial magnetic resonance imaging study. Alzheimers. Dement. 14, 43–53. 10.1016/j.jalz.2017.06.2268. PubMed DOI PMC
Ahn J.H., Kim M., Kim J.S., Youn J., Jang W., Oh E., Lee P.H., Koh S.-B., Ahn T.-B., and Cho J.W. (2019). Midbrain atrophy in patients with presymptomatic progressive supranuclear palsy-Richardson’s syndrome. Parkinsonism Relat. Disord. 66, 80–86. 10.1016/j.parkreldis.2019.07.009. PubMed DOI
Benatar M., Wuu J., McHutchison C., Postuma R.B., Boeve B.F., Petersen R., Ross C.A., Rosen H., Arias J.J., Fradette S., et al. (2022). Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 145, 27–44. 10.1093/brain/awab404. PubMed DOI PMC
Masuda H., Mori M., Hirano S., Uzawa A., Uchida T., Muto M., Ohtani R., Aoki R., and Kuwabara S. (2022). Silent progression of brain atrophy in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J. Neurol. Neurosurg. Psychiatry 93, 32–40. 10.1136/jnnp-2021-326386. PubMed DOI PMC
Alfaro-Almagro F., McCarthy P., Afyouni S., Andersson J.L.R., Bastiani M., Miller K.L., Nichols T.E., and Smith S.M. (2021). Confound modelling in UK Biobank brain imaging. Neuroimage 224, 117002. 10.1016/j.neuroimage.2020.117002. PubMed DOI PMC
Smith S.M., Zhang Y., Jenkinson M., Chen J., Matthews P.M., Federico A., and De Stefano N. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17, 479–489. 10.1006/nimg.2002.1040. PubMed DOI
Vuoksimaa E., Panizzon M.S., Franz C.E., Fennema-Notestine C., Hagler D.J. Jr, Lyons M.J., Dale A.M., and Kremen W.S. (2018). Brain structure mediates the association between height and cognitive ability. Brain Struct. Funct. 223, 3487–3494. 10.1007/s00429-018-1675-4. PubMed DOI PMC
Larsson S.C., Traylor M., Burgess S., and Markus H.S. (2017). Genetically-predicted adult height and Alzheimer’s disease. J. Alzheimers. Dis. 60, 691–698. 10.3233/JAD-170528. PubMed DOI PMC
Jørgensen T.S.H., Okholm G.T., Christensen K., Sørensen T.I., and Osler M. (2020). Body height in young adult men and risk of dementia later in adult life. Elife 9. 10.7554/eLife.51168. PubMed DOI PMC
Daghlas I., Nassan M., and Gill D. (2023). Genetically proxied lean mass and risk of Alzheimer’s disease: mendelian randomisation study. BMJ Med 2, e000354. 10.1136/bmjmed-2022-000354. PubMed DOI PMC
Seitz J., Bühren K., von Polier G.G., Heussen N., Herpertz-Dahlmann B., and Konrad K. (2014). Morphological changes in the brain of acutely ill and weight-recovered patients with anorexia nervosa. A meta-analysis and qualitative review. Z. Kinder Jugendpsychiatr. Psychother. 42, 7–17; quiz 17–18. 10.1024/1422-4917/a000265. PubMed DOI
Dong D., Wang Y., Long Z., Jackson T., Chang X., Zhou F., and Chen H. (2021). The Association between Body Mass Index and Intra-Cortical Myelin: Findings from the Human Connectome Project. Nutrients 13. 10.3390/nu13093221. PubMed DOI PMC
Kullmann S., Callaghan M.F., Heni M., Weiskopf N., Scheffler K., Häring H.-U., Fritsche A., Veit R., and Preissl H. (2016). Specific white matter tissue microstructure changes associated with obesity. Neuroimage 125, 36–44. 10.1016/j.neuroimage.2015.10.006. PubMed DOI PMC
Okudzhava L., Heldmann M., and Münte T.F. (2022). A systematic review of diffusion tensor imaging studies in obesity. Obes. Rev. 23, e13388. 10.1111/obr.13388. PubMed DOI
Woo A., Botta A., Shi S.S.W., Paus T., and Pausova Z. (2022). Obesity-Related Neuroinflammation: Magnetic Resonance and Microscopy Imaging of the Brain. Int. J. Mol. Sci. 23. 10.3390/ijms23158790. PubMed DOI PMC
Glasser M.F., Coalson T.S., Harms M.P., Xu J., Baum G.L., Autio J.A., Auerbach E.J., Greve D.N., Yacoub E., Van Essen D.C., et al. (2022). Empirical transmit field bias correction of T1w/T2w myelin maps. Neuroimage 258, 119360. 10.1016/j.neuroimage.2022.119360. PubMed DOI PMC
Fradet L., Arnoux P.-J., Ranjeva J.-P., Petit Y., and Callot V. (2014). Morphometrics of the entire human spinal cord and spinal canal measured from in vivo high-resolution anatomical magnetic resonance imaging. Spine 39, E262–E269. 10.1097/BRS.0000000000000125. PubMed DOI
Zyoud T.Y.T., Abdul Rashid S.N., Suppiah S., Mahmud R., Kabeer A., Abd Manaf R., and Abdul Rahim E. (2020). Estimation of body height from spinal length measurements using post-mortem computed tomographic images. Malays. J. Pathol. 42, 423–431. PubMed
Kameyama T., Hashizume Y., and Sobue G. (1996). Morphologic features of the normal human cadaveric spinal cord. Spine 21, 1285–1290. 10.1097/00007632-199606010-00001. PubMed DOI
Healy B.C., Arora A., Hayden D.L., Ceccarelli A., Tauhid S.S., Neema M., and Bakshi R. (2012). Approaches to normalization of spinal cord volume: application to multiple sclerosis. J. Neuroimaging 22, e12–e19. 10.1111/j.1552-6569.2011.00629.x. PubMed DOI PMC
Cohen-Adad J., Alonso-Ortiz E., Alley S., Lagana M.M., Baglio F., Vannesjo S.J., Karbasforoushan H., Seif M., Seifert A.C., Xu J., et al. (2022). Comparison of multicenter MRI protocols for visualizing the spinal cord gray matter. Magn. Reson. Med. 10.1002/mrm.29249. PubMed DOI
Kadanka Z. Jr, Adamova B., Kerkovsky M., Kadanka Z., Dusek L., Jurova B., Vlckova E., and Bednarik J. (2017). Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 7, e00797. 10.1002/brb3.797. PubMed DOI PMC
Sowell E.R., Peterson B.S., Kan E., Woods R.P., Yoshii J., Bansal R., Xu D., Zhu H., Thompson P.M., and Toga A.W. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb. Cortex 17, 1550–1560. 10.1093/cercor/bhl066. PubMed DOI PMC
Tamnes C.K., Ostby Y., Fjell A.M., Westlye L.T., Due-Tønnessen P., and Walhovd K.B. (2010). Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb. Cortex 20, 534–548. 10.1093/cercor/bhp118. PubMed DOI
Frangou S., Modabbernia A., Williams S.C.R., Papachristou E., Doucet G.E., Agartz I., Aghajani M., Akudjedu T.N., Albajes-Eizagirre A., Alnaes D., et al. (2022). Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Hum. Brain Mapp. 43, 431–451. 10.1002/hbm.25364. PubMed DOI PMC
Narvacan K., Treit S., Camicioli R., Martin W., and Beaulieu C. (2017). Evolution of deep gray matter volume across the human lifespan. Hum. Brain Mapp. 38, 3771–3790. 10.1002/hbm.23604. PubMed DOI PMC
Fjell A.M., Grydeland H., Wang Y., Amlien I.K., Bartres-Faz D., Brandmaier A.M., Düzel S., Elman J., Franz C.E., Håberg A.K., et al. (2021). The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan. Elife 10. 10.7554/eLife.66466. PubMed DOI PMC
Ishikawa M., Matsumoto M., Fujimura Y., Chiba K., and Toyama Y. (2003). Changes of cervical spinal cord and cervical spinal canal with age in asymptomatic subjects. Spinal Cord 41, 159–163. 10.1038/sj.sc.3101375. PubMed DOI
Piccolo L.R., Merz E.C., He X., Sowell E.R., Noble K.G., and Pediatric Imaging, Neurocognition, Genetics Study (2016). Age-Related Differences in Cortical Thickness Vary by Socioeconomic Status. PLoS One 11, e0162511. 10.1371/journal.pone.0162511. PubMed DOI PMC
De Leener B., Lévy S., Dupont S.M., Fonov V.S., Stikov N., Louis Collins D., Callot V., and Cohen-Adad J. (2017). SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43. 10.1016/j.neuroimage.2016.10.009. PubMed DOI
Lévy S., Benhamou M., Naaman C., Rainville P., Callot V., and Cohen-Adad J. (2015). White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage 119, 262–271. 10.1016/j.neuroimage.2015.06.040. PubMed DOI
Fischl B. (2012). FreeSurfer. Neuroimage 62, 774–781. 10.1016/j.neuroimage.2012.01.021. PubMed DOI PMC