Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R00 EB016689
NIBIB NIH HHS - United States
European Research Council - International
K23 NS104211
NINDS NIH HHS - United States
P41 EB015896
NIBIB NIH HHS - United States
P41 EB030006
NIBIB NIH HHS - United States
K01 NS105160
NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
L30 NS108301
NINDS NIH HHS - United States
R01 NS109114
NINDS NIH HHS - United States
R01 EB027779
NIBIB NIH HHS - United States
PubMed
34400655
PubMed Central
PMC8368310
DOI
10.1038/s41597-021-00941-8
PII: 10.1038/s41597-021-00941-8
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mícha diagnostické zobrazování ultrastruktura MeSH
- neurozobrazování * MeSH
- počítačové zpracování obrazu MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.
Aix Marseille Univ CNRS CRMBM Marseille France
APHM Hopital Universitaire Timone CEMEREM Marseille France
Brain MRI 3T Research Centre IRCCS Mondino Foundation Pavia Italy
Centre de Recherche CHUS CIMS Sherbrooke Canada
Centre for Advanced Imaging The University of Queensland Brisbane Australia
CHU Sainte Justine Research Centre Montreal QC Canada
CREF Museo storico della fisica e Centro studi e ricerche Enrico Fermi Rome Italy
CUBRIC Cardiff University Wales UK
Department of Brain and Behavioural Sciences University of Pavia Pavia Italy
Department of Computer and Software Engineering Polytechnique Montreal Montreal Canada
Department Of Medicine University of British Columbia Vancouver BC Canada
Department of Neurosurgery Medical College of Wisconsin Milwaukee WI USA
Department of Physics and Astronomy University of British Columbia Vancouver BC Canada
Department of Psychology University of Chinese Academy of Sciences Beijing China
Department of Radiology and Medical Informatics University of Geneva Geneva Switzerland
Department of Radiology Beijing Tiantan Hospital Capital Medical University Beijing China
Department of Radiology Harvard Medical School Boston MA USA
Department of Radiology Juntendo University School of Medicine Tokyo Japan
Department of Radiology Swiss Paraplegic Centre Nottwil Switzerland
Department of Radiology the University of Tokyo Tokyo Japan
Department of Radiology Toho University Omori Medical Center Tokyo Japan
Department of Radiology University of British Columbia Vancouver BC Canada
Department of Radiology Vanderbilt University Medical Center Nashville TN USA
Department of Systems Neuroscience University Medical Center Hamburg Eppendorf Hamburg Germany
E health Centre Universitat Oberta de Catalunya Barcelona Spain
Epilepsy Society MRI Unit Chalfont St Peter UK
Fondation Campus Biotech Genève 1202 Geneva Switzerland
Functional Neuroimaging Unit CRIUGM Université de Montréal Montreal QC Canada
Harvard Massachusetts Institute of Technology Health Sciences and Technology Cambridge MA USA
Institute of Nanotechnology CNR Rome Italy
IRCCS Fondazione Don Carlo Gnocchi ONLUS Milan Italy
IRCCS Santa Lucia Foundation Rome Italy
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
McConnell Brain Imaging Centre Montreal Neurological Institute McGill University Montreal QC Canada
Mila Quebec AI Institute Montreal QC Canada
MR Clinical Science Philips Healthcare Markham ON Canada
NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal Montreal QC Canada
Neuroradiology Section Vall d'Hebron University Hospital Barcelona Spain
Richard M Lucas Center Stanford University School of Medicine Stanford CA USA
School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
Spinal Cord Injury Center Balgrist University of Zurich Zurich Switzerland
Université de Strasbourg CNRS ICube Strasbourg France
University of Oklahoma Health Sciences Center Oklahoma City OK USA
Zobrazit více v PubMed
Cercignani, M., Dowell, N. G. & Tofts, P. S. Quantitative MRI of the Brain: Principles of Physical Measurement, Second edition. (CRC Press, 2018).
Cohen-Adad, J. & Wheeler-Kingshott, C. Quantitative MRI of the Spinal Cord. (2014).
Wheeler-Kingshott CA, et al. The current state-of-the-art of spinal cord imaging: applications. Neuroimage. 2014;84:1082–1093. doi: 10.1016/j.neuroimage.2013.07.014. PubMed DOI PMC
Stroman PW, et al. The current state-of-the-art of spinal cord imaging: methods. Neuroimage. 2014;84:1070–1081. doi: 10.1016/j.neuroimage.2013.04.124. PubMed DOI PMC
Cohen-Adad, J. et al. Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols10.1038/s41596-021-00588-0 (2021). PubMed PMC
Gulban OF, 2019. poldracklab/pydeface: v2.0.0. Zenodo. DOI
De Leener B, et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage. 2017;145:24–43. doi: 10.1016/j.neuroimage.2016.10.009. PubMed DOI
Gros C, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 2019;184:901–915. doi: 10.1016/j.neuroimage.2018.09.081. PubMed DOI PMC
Ullmann E, Paquette PJF, Thong WE, Cohen-Adad J. Automatic labeling of vertebral levels using a robust template-based approach. Int. J. Biomed. Imaging. 2014;2014:719520. doi: 10.1155/2014/719520. PubMed DOI PMC
De Leener B, et al. PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage. 2018;165:170–179. doi: 10.1016/j.neuroimage.2017.10.041. PubMed DOI
Perone CS, Calabrese E, Cohen-Adad J. Spinal cord gray matter segmentation using deep dilated convolutions. Sci. Rep. 2018;8:5966. doi: 10.1038/s41598-018-24304-3. PubMed DOI PMC
Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn. Reson. Med. 2008;60:1396–1407. doi: 10.1002/mrm.21732. PubMed DOI
Levy S, et al. White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage. 2015;119:262–271. doi: 10.1016/j.neuroimage.2015.06.040. PubMed DOI
Xu J, et al. Improved in vivo diffusion tensor imaging of human cervical spinal cord. Neuroimage. 2013;67:64–76. doi: 10.1016/j.neuroimage.2012.11.014. PubMed DOI PMC
Garyfallidis E, et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 2014;8:8. doi: 10.3389/fninf.2014.00008. PubMed DOI PMC
Cohen-Adad J, 2020. Spine Generic Public Database (Single Subject) Zenodo. DOI
Cohen-Adad J, 2020. Spine Generic Public Database (Multi-Subject) Zenodo. DOI
Halchenko YO, 2019. datalad/datalad 0.12.0rc6. Zenodo. DOI
Gorgolewski KJ, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3:160044. doi: 10.1038/sdata.2016.44. PubMed DOI PMC
Papinutto N, et al. Intersubject Variability and Normalization Strategies for Spinal Cord Total Cross‐Sectional and Gray Matter Areas. J. Neuroimaging. 2020;30:110–118. doi: 10.1111/jon.12666. PubMed DOI PMC
Smith SA, et al. Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 tesla. NMR Biomed. 2010;23:207–217. PubMed PMC
Agosta F, et al. Evidence for cervical cord tissue disorganisation with aging by diffusion tensor MRI. Neuroimage. 2007;36:728–735. doi: 10.1016/j.neuroimage.2007.03.048. PubMed DOI
Kameyama T, Hashizume Y, Sobue G. Morphologic features of the normal human cadaveric spinal cord. Spine. 1996;21:1285–1290. doi: 10.1097/00007632-199606010-00001. PubMed DOI
Papinutto N, et al. Age, Gender and Normalization Covariates for Spinal Cord Gray Matter and Total Cross-Sectional Areas at Cervical and Thoracic Levels: A 2D Phase Sensitive Inversion Recovery Imaging Study. PLoS One. 2015;10:e0118576. doi: 10.1371/journal.pone.0118576. PubMed DOI PMC
Rooney WD, et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn. Reson. Med. 2007;57:308–318. doi: 10.1002/mrm.21122. PubMed DOI
De Leener B, Kadoury S, Cohen-Adad J. Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage. 2014;98:528–536. doi: 10.1016/j.neuroimage.2014.04.051. PubMed DOI
Kearney H, et al. Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J. Magn. Reson. Imaging. 2014;39:617–623. doi: 10.1002/jmri.24194. PubMed DOI
Fonov VS, et al. Framework for integrated MRI average of the spinal cord white and gray matter: The MNI-Poly-AMU template. Neuroimage. 2014;102P2:817–827. doi: 10.1016/j.neuroimage.2014.08.057. PubMed DOI
Fujimoto K, et al. Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage. 2014;90:60–73. doi: 10.1016/j.neuroimage.2013.12.012. PubMed DOI PMC
Campbell JSW, et al. Promise and pitfalls of g-ratio estimation with MRI. Neuroimage. 2018;182:80–96. doi: 10.1016/j.neuroimage.2017.08.038. PubMed DOI
Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 2004;56:407–415. doi: 10.1002/ana.20202. PubMed DOI
Callaghan MF, Helms G, Lutti A, Mohammadi S, Weiskopf N. A general linear relaxometry model of R1 using imaging data. Magn. Reson. Med. 2015;73:1309–1314. doi: 10.1002/mrm.25210. PubMed DOI PMC
Jones DK, Basser PJ. Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 2004;52:979–993. doi: 10.1002/mrm.20283. PubMed DOI
Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC
Stikov N, Trzasko JD, Bernstein MA. Reproducibility and the future of MRI research. Magn. Reson. Med. 2019;82:1981–1983. doi: 10.1002/mrm.27939. PubMed DOI
Reback J, 2021. pandas-dev/pandas: Pandas 1.2.2. Zenodo. DOI
Yarkoni, T. et al. PyBIDS: Python tools for BIDS datasets. J Open Source Softw. 4 (2019). PubMed PMC
Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox
Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review
Generic acquisition protocol for quantitative MRI of the spinal cord