Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

. 2021 Aug 16 ; 8 (1) : 219. [epub] 20210816

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34400655

Grantová podpora
R00 EB016689 NIBIB NIH HHS - United States
European Research Council - International
K23 NS104211 NINDS NIH HHS - United States
P41 EB015896 NIBIB NIH HHS - United States
P41 EB030006 NIBIB NIH HHS - United States
K01 NS105160 NINDS NIH HHS - United States
Wellcome Trust - United Kingdom
L30 NS108301 NINDS NIH HHS - United States
R01 NS109114 NINDS NIH HHS - United States
R01 EB027779 NIBIB NIH HHS - United States

Odkazy

PubMed 34400655
PubMed Central PMC8368310
DOI 10.1038/s41597-021-00941-8
PII: 10.1038/s41597-021-00941-8
Knihovny.cz E-zdroje

In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.

Aix Marseille Univ CNRS CRMBM Marseille France

APHM Hopital Universitaire Timone CEMEREM Marseille France

Athinoula A Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown MA USA

BioMedical Engineering and Imaging Institute Department of Radiology Icahn School of Medicine at Mount Sinai New York NY USA

Brain MRI 3T Research Centre IRCCS Mondino Foundation Pavia Italy

CAS Key Laboratory of Behavioral Science Institute of Psychology Chinese Academy of Sciences Beijing China

Center for Magnetic Resonance Research Department of Radiology University of Minnesota Minneapolis MN USA

Center of Neuroimmunology Laboratory of Advanced Imaging in Neuroimmunological Diseases Hospital Clinic Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de Barcelona Barcelona Spain

Centre de Recherche CHUS CIMS Sherbrooke Canada

Centre for Advanced Imaging The University of Queensland Brisbane Australia

Centre for Medical Image Computing Medical Physics and Biomedical Engineering Department University College London London UK

Centre of Precision Rehabilitation for Spinal Pain School of Sport Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Edgbaston Birmingham UK

CHU Sainte Justine Research Centre Montreal QC Canada

CREF Museo storico della fisica e Centro studi e ricerche Enrico Fermi Rome Italy

CUBRIC Cardiff University Wales UK

Department of Brain and Behavioural Sciences University of Pavia Pavia Italy

Department of Computer and Software Engineering Polytechnique Montreal Montreal Canada

Department Of Medicine University of British Columbia Vancouver BC Canada

Department of Neurology Faculty of Medicine and Dentistry Palacký University and University Hospital Olomouc Olomouc Czech Republic

Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany

Department of Neurosurgery Medical College of Wisconsin Milwaukee WI USA

Department of Physics and Astronomy University of British Columbia Vancouver BC Canada

Department of Psychiatry and Behavioral Sciences School of Medicine Stanford University Stanford CA USA

Department of Psychology University of Chinese Academy of Sciences Beijing China

Department of Radiology and Medical Informatics University of Geneva Geneva Switzerland

Department of Radiology Beijing Tiantan Hospital Capital Medical University Beijing China

Department of Radiology Harvard Medical School Boston MA USA

Department of Radiology Juntendo University School of Medicine Tokyo Japan

Department of Radiology Swiss Paraplegic Centre Nottwil Switzerland

Department of Radiology the University of Tokyo Tokyo Japan

Department of Radiology Toho University Omori Medical Center Tokyo Japan

Department of Radiology University of British Columbia Vancouver BC Canada

Department of Radiology Vanderbilt University Medical Center Nashville TN USA

Department of Systems Neuroscience University Medical Center Hamburg Eppendorf Hamburg Germany

Departments of Neurology and Biomedical Engineering University Hospital Olomouc Olomouc Czech Republic

Departments of Radiology Pathology and Laboratory Medicine Physics and Astronomy; International Collaboration on Repair Discoveries University of British Columbia Vancouver BC Canada

Division of Clinical Behavioral Neuroscience Department of Pediatrics University of Minnesota Minneapolis MN USA

Division of Pain Medicine Department of Anesthesiology Perioperative and Pain Medicine Stanford University School of Medicine Stanford CA USA

E health Centre Universitat Oberta de Catalunya Barcelona Spain

Epilepsy Society MRI Unit Chalfont St Peter UK

Felix Bloch Institute for Solid State Physics Faculty of Physics and Earth Sciences Leipzig University Leipzig Germany

Fondation Campus Biotech Genève 1202 Geneva Switzerland

Functional Neuroimaging Unit CRIUGM Université de Montréal Montreal QC Canada

Harvard Massachusetts Institute of Technology Health Sciences and Technology Cambridge MA USA

Institute for Advanced Biomedical Technologies Department of Neuroscience Imaging and Clinical Sciences G D'Annunzio University of Chieti Pescara Chieti Pescara Italy

Institute of Bioengineering Center for Neuroprosthetics Ecole Polytechnique Fédérale de Lausanne Geneva Switzerland

Institute of Diagnostic and Interventional Neuroradiology Carl Gustav Carus University Hospital Technische Universität Dresden Dresden Germany

Institute of Nanotechnology CNR Rome Italy

Interdepartmental Neuroscience Program Feinberg School of Medicine Northwestern University Chicago IL USA

IRCCS Fondazione Don Carlo Gnocchi ONLUS Milan Italy

IRCCS Santa Lucia Foundation Rome Italy

Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany

McConnell Brain Imaging Centre Montreal Neurological Institute McGill University Montreal QC Canada

Mila Quebec AI Institute Montreal QC Canada

MR Clinical Science Philips Healthcare Markham ON Canada

Multimodal and functional imaging laboratory Central European Institute of Technology Brno Czech Republic

NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal Montreal QC Canada

Neuroradiology Section Vall d'Hebron University Hospital Barcelona Spain

NMR Research Unit Queen Square MS Centre UCL Queen Square Institute of Neurology Faculty of Brain Sciences University College London London UK

Radiomics Group Vall d'Hebron Institute of Oncology Vall d'Hebron Barcelona Hospital Campus Barcelona Spain

Richard M Lucas Center Stanford University School of Medicine Stanford CA USA

School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia

School of Information Technology and Electrical Engineering The University of Queensland Brisbane Australia

Sherbrooke Connectivity Imaging Lab Computer Science department Université de Sherbrooke Sherbrooke Canada

Spinal Cord Injury Center Balgrist University of Zurich Zurich Switzerland

Tiantan Image Research Center China National Clinical Research Center for Neurological Diseases Beijing China

UCSF Weill Institute for Neurosciences Department of Neurology University of California San Francisco San Francisco CA USA

UHB University Hospital Brno and Masaryk University Department of Radiology and Nuclear Medicine Brno Czech Republic

Université de Strasbourg CNRS ICube Strasbourg France

University of Oklahoma Health Sciences Center Oklahoma City OK USA

Vanderbilt University Institute of Imaging Science Vanderbilt University Medical Center Nashville TN USA

Wellcome Centre For Integrative Neuroimaging FMRIB Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK

Erratum v

PubMed

Erratum v

PubMed

Zobrazit více v PubMed

Cercignani, M., Dowell, N. G. & Tofts, P. S. Quantitative MRI of the Brain: Principles of Physical Measurement, Second edition. (CRC Press, 2018).

Cohen-Adad, J. & Wheeler-Kingshott, C. Quantitative MRI of the Spinal Cord. (2014).

Wheeler-Kingshott CA, et al. The current state-of-the-art of spinal cord imaging: applications. Neuroimage. 2014;84:1082–1093. doi: 10.1016/j.neuroimage.2013.07.014. PubMed DOI PMC

Stroman PW, et al. The current state-of-the-art of spinal cord imaging: methods. Neuroimage. 2014;84:1070–1081. doi: 10.1016/j.neuroimage.2013.04.124. PubMed DOI PMC

Cohen-Adad, J. et al. Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols10.1038/s41596-021-00588-0 (2021). PubMed PMC

Gulban OF, 2019. poldracklab/pydeface: v2.0.0. Zenodo. DOI

De Leener B, et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage. 2017;145:24–43. doi: 10.1016/j.neuroimage.2016.10.009. PubMed DOI

Gros C, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 2019;184:901–915. doi: 10.1016/j.neuroimage.2018.09.081. PubMed DOI PMC

Ullmann E, Paquette PJF, Thong WE, Cohen-Adad J. Automatic labeling of vertebral levels using a robust template-based approach. Int. J. Biomed. Imaging. 2014;2014:719520. doi: 10.1155/2014/719520. PubMed DOI PMC

De Leener B, et al. PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage. 2018;165:170–179. doi: 10.1016/j.neuroimage.2017.10.041. PubMed DOI

Perone CS, Calabrese E, Cohen-Adad J. Spinal cord gray matter segmentation using deep dilated convolutions. Sci. Rep. 2018;8:5966. doi: 10.1038/s41598-018-24304-3. PubMed DOI PMC

Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn. Reson. Med. 2008;60:1396–1407. doi: 10.1002/mrm.21732. PubMed DOI

Levy S, et al. White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage. 2015;119:262–271. doi: 10.1016/j.neuroimage.2015.06.040. PubMed DOI

Xu J, et al. Improved in vivo diffusion tensor imaging of human cervical spinal cord. Neuroimage. 2013;67:64–76. doi: 10.1016/j.neuroimage.2012.11.014. PubMed DOI PMC

Garyfallidis E, et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 2014;8:8. doi: 10.3389/fninf.2014.00008. PubMed DOI PMC

Cohen-Adad J, 2020. Spine Generic Public Database (Single Subject) Zenodo. DOI

Cohen-Adad J, 2020. Spine Generic Public Database (Multi-Subject) Zenodo. DOI

Halchenko YO, 2019. datalad/datalad 0.12.0rc6. Zenodo. DOI

Gorgolewski KJ, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3:160044. doi: 10.1038/sdata.2016.44. PubMed DOI PMC

Papinutto N, et al. Intersubject Variability and Normalization Strategies for Spinal Cord Total Cross‐Sectional and Gray Matter Areas. J. Neuroimaging. 2020;30:110–118. doi: 10.1111/jon.12666. PubMed DOI PMC

Smith SA, et al. Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 tesla. NMR Biomed. 2010;23:207–217. PubMed PMC

Agosta F, et al. Evidence for cervical cord tissue disorganisation with aging by diffusion tensor MRI. Neuroimage. 2007;36:728–735. doi: 10.1016/j.neuroimage.2007.03.048. PubMed DOI

Kameyama T, Hashizume Y, Sobue G. Morphologic features of the normal human cadaveric spinal cord. Spine. 1996;21:1285–1290. doi: 10.1097/00007632-199606010-00001. PubMed DOI

Papinutto N, et al. Age, Gender and Normalization Covariates for Spinal Cord Gray Matter and Total Cross-Sectional Areas at Cervical and Thoracic Levels: A 2D Phase Sensitive Inversion Recovery Imaging Study. PLoS One. 2015;10:e0118576. doi: 10.1371/journal.pone.0118576. PubMed DOI PMC

Rooney WD, et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn. Reson. Med. 2007;57:308–318. doi: 10.1002/mrm.21122. PubMed DOI

De Leener B, Kadoury S, Cohen-Adad J. Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage. 2014;98:528–536. doi: 10.1016/j.neuroimage.2014.04.051. PubMed DOI

Kearney H, et al. Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J. Magn. Reson. Imaging. 2014;39:617–623. doi: 10.1002/jmri.24194. PubMed DOI

Fonov VS, et al. Framework for integrated MRI average of the spinal cord white and gray matter: The MNI-Poly-AMU template. Neuroimage. 2014;102P2:817–827. doi: 10.1016/j.neuroimage.2014.08.057. PubMed DOI

Fujimoto K, et al. Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage. 2014;90:60–73. doi: 10.1016/j.neuroimage.2013.12.012. PubMed DOI PMC

Campbell JSW, et al. Promise and pitfalls of g-ratio estimation with MRI. Neuroimage. 2018;182:80–96. doi: 10.1016/j.neuroimage.2017.08.038. PubMed DOI

Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 2004;56:407–415. doi: 10.1002/ana.20202. PubMed DOI

Callaghan MF, Helms G, Lutti A, Mohammadi S, Weiskopf N. A general linear relaxometry model of R1 using imaging data. Magn. Reson. Med. 2015;73:1309–1314. doi: 10.1002/mrm.25210. PubMed DOI PMC

Jones DK, Basser PJ. Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 2004;52:979–993. doi: 10.1002/mrm.20283. PubMed DOI

Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Stikov N, Trzasko JD, Bernstein MA. Reproducibility and the future of MRI research. Magn. Reson. Med. 2019;82:1981–1983. doi: 10.1002/mrm.27939. PubMed DOI

Reback J, 2021. pandas-dev/pandas: Pandas 1.2.2. Zenodo. DOI

Yarkoni, T. et al. PyBIDS: Python tools for BIDS datasets. J Open Source Softw. 4 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...