Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35566426
PubMed Central
PMC9105390
DOI
10.3390/jcm11092301
PII: jcm11092301
Knihovny.cz E-zdroje
- Klíčová slova
- degenerative cervical myelopathy, diffusion magnetic resonance imaging, non-myelopathic cervical spinal cord compression, quantitative magnetic resonance imaging,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Biomedical Engineering University Hospital Olomouc 779 00 Olomouc Czech Republic
Department of Neurology University Hospital Brno 625 00 Brno Czech Republic
Department of Neurology University Hospital Olomouc 779 00 Olomouc Czech Republic
Department of Radiology and Nuclear Medicine University Hospital Brno 625 00 Brno Czech Republic
Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Badhiwala J.H., Ahuja C.S., Akbar M.A., Witiw C.D., Nassiri F., Furlan J.C., Curt A., Wilson J.R., Fehlings M.G. Degenerative cervical myelopathy—Update and future directions. Nat. Rev. Neurol. 2020;16:108–124. doi: 10.1038/s41582-019-0303-0. PubMed DOI
Bednarik J., Kadanka Z., Dusek L., Novotny O., Surelova D., Urbanek I., Prokes B. Presymptomatic spondylotic cervical cord compression. Spine. 2004;29:2260–2269. doi: 10.1097/01.brs.0000142434.02579.84. PubMed DOI
Bednarik J., Kadanka Z., Dusek L., Kerkovsky M., Vohanka S., Novotny O., Urbanek I., Kratochvilova D. Presymptomatic spondylotic cervical myelopathy: An updated predictive model. Eur. Spine J. 2008;17:421–431. doi: 10.1007/s00586-008-0585-1. PubMed DOI PMC
Fehlings M.G., Tetreault L.A., Riew K.D., Middleton J.W., Aarabi B., Arnold P.M., Brodke D.S., Burns A.S., Carette S., Chen R., et al. A Clinical Practice Guideline for the Management of Patients with Degenerative Cervical Myelopathy: Recommendations for Patients with Mild, Moderate, and Severe Disease and Nonmyelopathic Patients with Evidence of Cord Compression. Glob. Spine J. 2017;7:70S–83S. doi: 10.1177/2192568217701914. PubMed DOI PMC
Valošek J., Labounek R., Horák T., Horáková M., Bednařík P., Keřkovský M., Kočica J., Rohan T., Lenglet C., Cohen-Adad J., et al. Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression. Eur. J. Neurol. 2021;28:3784–3797. doi: 10.1111/ene.15027. PubMed DOI PMC
Kovalova I., Kerkovsky M., Kadanka Z., Kadanka Z., Nemec M., Jurova B., Dusek L., Jarkovsky J., Bednarik J. Prevalence and imaging characteristics of nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine. 2016;41:1908–1916. doi: 10.1097/BRS.0000000000001842. PubMed DOI
David G., Mohammadi S., Martin A.R., Cohen-Adad J., Weiskopf N., Thompson A., Freund P. Traumatic and nontraumatic spinal cord injury: Pathological insights from neuroimaging. Nat. Rev. Neurol. 2019;15:718–731. doi: 10.1038/s41582-019-0270-5. PubMed DOI
Kowalczyk I., Duggal N., Bartha R. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain. 2012;135:461–468. doi: 10.1093/brain/awr328. PubMed DOI
Bernabéu-Sanz Á., Mollá-Torró J.V., López-Celada S., Moreno López P., Fernández-Jover E. MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur. Radiol. 2020;30:357–369. doi: 10.1007/s00330-019-06352-z. PubMed DOI
Smith S.S., Stewart M.E., Davies B.M., Kotter M.R.N. The Prevalence of Asymptomatic and Symptomatic Spinal Cord Compression on Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Glob. Spine, J. 2021;11:597–607. doi: 10.1177/2192568220934496. PubMed DOI PMC
Witiw C.D., Mathieu F., Nouri A., Fehlings M.G. Clinico-Radiographic Discordance: An Evidence-Based Commentary on the Management of Degenerative Cervical Spinal Cord Compression in the Absence of Symptoms or With Only Mild Symptoms of Myelopathy. Glob. Spine J. 2018;8:527–534. doi: 10.1177/2192568217745519. PubMed DOI PMC
Wilson J.R., Barry S., Fischer D.J., Skelly A.C., Arnold P.M., Riew K.D., Shaffrey C.I., Traynelis V.C., Fehlings M.G. Frequency, Timing, and Predictors of Neurological Dysfunction in the Nonmyelopathic Patient with Cervical Spinal Cord Compression, Canal Stenosis, and/or Ossification of the Posterior Longitudinal Ligament. Spine. 2013;38:S37–S54. doi: 10.1097/BRS.0b013e3182a7f2e7. PubMed DOI
WFNS Cervical Spondylotic Myelopathy. [(accessed on 15 January 2022)]. Available online: http://wfns-spine.org/recom-cervical-spondylotic-myelopathy-1.
Oh T., Lafage R., Lafage V., Protopsaltis T., Challier V., Shaffrey C., Kim H.J., Arnold P., Chapman J., Schwab F., et al. Comparing Quality of Life in Cervical Spondylotic Myelopathy with Other Chronic Debilitating Diseases Using the Short Form Survey 36-Health Survey. World Neurosurg. 2017;106:699–706. doi: 10.1016/j.wneu.2016.12.124. PubMed DOI
Baptiste D.C., Fehlings M.G. Pathophysiology of cervical myelopathy. Spine J. 2006;6:190–197. doi: 10.1016/j.spinee.2006.04.024. PubMed DOI
Akter F., Yu X., Qin X., Yao S., Nikrouz P., Syed Y.A., Kotter M. The Pathophysiology of Degenerative Cervical Myelopathy and the Physiology of Recovery Following Decompression. Front. Neurosci. 2020;14:138. doi: 10.3389/fnins.2020.00138. PubMed DOI PMC
Akter F., Kotter M. Pathobiology of Degenerative Cervical Myelopathy. Neurosurg. Clin. N. Am. 2018;29:13–19. doi: 10.1016/j.nec.2017.09.015. PubMed DOI
Tu J., Vargas Castillo J., Das A., Diwan A.D. Degenerative Cervical Myelopathy: Insights into Its Pathobiology and Molecular Mechanisms. J. Clin. Med. 2021;10:1214. doi: 10.3390/jcm10061214. PubMed DOI PMC
Guan X., Fan G., Wu X., Gu G., Gu X., Zhang H., He S. Diffusion Tensor Imaging Studies of Cervical Spondylotic Myelopathy: A Systemic Review and Meta-Analysis. PLoS ONE. 2015;10:e0117707. doi: 10.1371/journal.pone.0117707. PubMed DOI PMC
Ellingson B.M., Salamon N., Holly L.T. Advances in MR imaging for cervical spondylotic myelopathy. Eur. Spine J. 2015;24:197–208. doi: 10.1007/s00586-013-2915-1. PubMed DOI PMC
Kerkovský M., Bednarík J., Dušek L., Šprláková-Puková A., Urbánek I., Mechl M., Válek V., Kadanka Z. Magnetic Resonance Diffusion Tensor Imaging in Patients with Cervical Spondylotic Spinal Cord Compression. Spine. 2012;37:48–56. doi: 10.1097/BRS.0b013e31820e6c35. PubMed DOI
Adamova B., Bednarik J., Andrasinova T., Kovalova I., Kopacik R., Jabornik M., Kerkovsky M., Jakubcova B., Jarkovsky J. Does lumbar spinal stenosis increase the risk of spondylotic cervical spinal cord compression? Eur. Spine J. 2015;24:2946–2953. doi: 10.1007/s00586-015-4049-0. PubMed DOI
Keřkovský M., Bednařík J., Jurová B., Dušek L., Kadaňka Z., Kadaňka Z., Němec M., Kovaľová I., Šprláková-Puková A., Mechl M. Spinal Cord MR Diffusion Properties in Patients with Degenerative Cervical Cord Compression. J. Neuroimaging. 2017;27:149–157. doi: 10.1111/jon.12372. PubMed DOI
Ellingson B.M., Salamon N., Woodworth D.C., Yokota H., Holly L.T. Reproducibility, temporal stability, and functional correlation of diffusion MR measurements within the spinal cord in patients with asymptomatic cervical stenosis or cervical myelopathy. J. Neurosurg. Spine. 2018;28:472–480. doi: 10.3171/2017.7.SPINE176. PubMed DOI PMC
Martin A.R., De Leener B., Cohen-Adad J., Cadotte D.W., Nouri A., Wilson J.R., Tetreault L., Crawley A.P., Mikulis D.J., Ginsberg H., et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open. 2018;8:e019809. doi: 10.1136/bmjopen-2017-019809. PubMed DOI PMC
Kadanka Z., Adamova B., Kerkovsky M., Kadanka Z., Dusek L., Jurova B., Vlckova E., Bednarik J. Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 2017;7:e00797. doi: 10.1002/brb3.797. PubMed DOI PMC
Labounek R., Valošek J., Horák T., Svátková A., Bednařík P., Vojtíšek L., Horáková M., Nestrašil I., Lenglet C., Cohen-Adad J., et al. HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci. Rep. 2020;10:17529. doi: 10.1038/s41598-020-70297-3. PubMed DOI PMC
Kadanka Z., Kadanka Z., Skutil T., Vlckova E., Bednarik J. Walk and Run Test in Patients with Degenerative Compression of the Cervical Spinal Cord. J. Clin. Med. 2021;10:927. doi: 10.3390/jcm10050927. PubMed DOI PMC
Horak T., Horakova M., Svatkova A., Kadanka Z., Kudlicka P., Valosek J., Rohan T., Kerkovsky M., Vlckova E., Kadanka Z., et al. In vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression. J. Neurotrauma. 2021;38:2999–3010. doi: 10.1089/neu.2021.0151. PubMed DOI PMC
Horáková M., Horák T., Valošek J., Rohan T., Koriťáková E., Dostál M., Kočica J., Skutil T., Keřkovský M., Kadaňka Z., Jr., et al. Semi-automated detection of cervical spinal cord compression with the Spinal Cord Toolbox. Quant. Imaging Med. Surg. 2022;12:2261–2279. doi: 10.21037/qims-21-782. PubMed DOI PMC
Nouri A., Martin A.R., Kato S., Reihani-Kermani H., Riehm L.E., Fehlings M.G. The Relationship between MRI Signal Intensity Changes, Clinical Presentation, and Surgical Outcome in Degenerative Cervical Myelopathy. Spine. 2017;42:1851–1858. doi: 10.1097/BRS.0000000000002234. PubMed DOI
Martin A.R., Tetreault L., Nouri A., Curt A., Freund P., Rahimi-Movaghar V., Wilson J.R., Fehlings M.G., Kwon B.K., Harrop J.S., et al. Imaging and Electrophysiology for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 9] Glob. Spine J. 2022;12:130S–146S. doi: 10.1177/21925682211057484. PubMed DOI PMC
Nouri A., Martin A.R., Mikulis D., Fehlings M.G. Magnetic resonance imaging assessment of degenerative cervical myelopathy: A review of structural changes and measurement techniques. Neurosurg. Focus. 2016;40:E5. doi: 10.3171/2016.3.FOCUS1667. PubMed DOI
Kato F., Yukawa Y., Suda K., Yamagata M., Ueta T. Normal morphology, age-related changes and abnormal findings of the cervical spine. Part II: Magnetic resonance imaging of over 1200 asymptomatic subjects. Eur. Spine J. 2012;21:1499–1507. doi: 10.1007/s00586-012-2176-4. PubMed DOI PMC
Martin A.R., De Leener B., Cohen-Adad J., Kalsi-Ryan S., Cadotte D.W., Wilson J.R., Tetreault L., Nouri A., Crawley A., Mikulis D.J., et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS ONE. 2018;13:e0195733. doi: 10.1371/journal.pone.0195733. PubMed DOI PMC
Grabher P., Mohammadi S., David G., Freund P. Neurodegeneration in the Spinal Ventral Horn Prior to Motor Impairment in Cervical Spondylotic Myelopathy. J. Neurotrauma. 2017;34:2329–2334. doi: 10.1089/neu.2017.4980. PubMed DOI
Grabher P., Mohammadi S., Trachsler A., Friedl S., David G., Sutter R., Weiskopf N., Thompson A.J., Curt A., Freund P. Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci. Rep. 2016;6:24636. doi: 10.1038/srep24636. PubMed DOI PMC
Valošek J., Bednařík P., Horák T., Horáková M., Svátková A., Labounek R., Hluštík P., Bednařík J. Cervical Spinal Cord Atrophy Above Level of Asymptomatic Degenerative Cervical Cord Compression; Proceedings of the 26th Annual Meeting of the Organization for Human Brain Mapping; Virtual. 23 June–3 July 2020; p. 3136.
Vallotton K., David G., Hupp M., Pfender N., Cohen-Adad J., Fehlings M.G., Samson R.S., Wheeler-Kingshott C.A.M.G., Curt A., Freund P., et al. Tracking White and Gray Matter Degeneration along the Spinal Cord Axis in Degenerative Cervical Myelopathy. J. Neurotrauma. 2021;38:2978–2987. doi: 10.1089/neu.2021.0148. PubMed DOI
David G., Vallotton K., Hupp M., Curt A., Freund P., Seif M. Extent of Cord Pathology in the Lumbosacral Enlargement in Non-Traumatic versus Traumatic Spinal Cord Injury. J. Neurotrauma. 2022 doi: 10.1089/neu.2021.0389. PubMed DOI
Lévy S., Benhamou M., Naaman C., Rainville P., Callot V., Cohen-Adad J. White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage. 2015;119:262–271. doi: 10.1016/j.neuroimage.2015.06.040. PubMed DOI
Johansen-Berg H., Behrens T.E.J. Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy. 2nd ed. Elsevier Science; Amsterdam, The Netherlands: 2013.
Martin A.R., Aleksanderek I., Cohen-Adad J., Tarmohamed Z., Tetreault L., Smith N., Cadotte D.W., Crawley A., Ginsberg H., Mikulis D.J., et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage Clin. 2016;10:192–238. doi: 10.1016/j.nicl.2015.11.019. PubMed DOI PMC
Mori S., Tournier J.-D. Introduction to Diffusion Tensor Imaging: And Higher Order Models. 2nd ed. Academic Press; Amsterdam, The Netherlands: 2014.
Cohen-Adad J. Microstructural imaging in the spinal cord and validation strategies. Neuroimage. 2018;182:169–183. doi: 10.1016/j.neuroimage.2018.04.009. PubMed DOI
Hori M., Hagiwara A., Fukunaga I., Ueda R., Kamiya K., Suzuki Y., Liu W., Murata K., Takamura T., Hamasaki N., et al. Application of Quantitative Microstructural MR Imaging with Atlas-based Analysis for the Spinal Cord in Cervical Spondylotic Myelopathy. Sci. Rep. 2018;8:5213. doi: 10.1038/s41598-018-23527-8. PubMed DOI PMC
Iwama T., Ohba T., Okita G., Ebata S., Ueda R., Motosugi U., Onishi H., Haro H., Hori M. Utility and validity of neurite orientation dispersion and density imaging with diffusion tensor imaging to quantify the severity of cervical spondylotic myelopathy and assess postoperative neurological recovery. Spine J. 2020;20:417–425. doi: 10.1016/j.spinee.2019.10.019. PubMed DOI
Grussu F., Schneider T., Zhang H., Alexander D.C., Wheeler-Kingshott C.A.M. Single-shell diffusion MRI NODDI with in vivo cervical cord data; Proceedings of the ISMRM; Milan, Italy. 10–16 May 2014;
Grussu F., Schneider T., Zhang H., Alexander D.C., Wheeler-Kingshott C.A.M. Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. Neuroimage. 2015;111:590–601. doi: 10.1016/j.neuroimage.2015.01.045. PubMed DOI
Grussu F., Schneider T., Tur C., Yates R.L., Tachrount M., Ianus ß A., Yiannakas M.C., Newcombe J., Zhang H., Alexander D.C., et al. Neurite dispersion: A new marker of multiple sclerosis spinal cord pathology? Ann. Clin. Transl. Neurol. 2017;4:663–679. doi: 10.1002/acn3.445. PubMed DOI PMC
Okita G., Ohba T., Takamura T., Ebata S., Ueda R., Onishi H., Haro H., Hori M. Application of neurite orientation dispersion and density imaging or diffusion tensor imaging to quantify the severity of cervical spondylotic myelopathy and to assess postoperative neurologic recovery. Spine J. 2018;18:268–275. doi: 10.1016/j.spinee.2017.07.007. PubMed DOI
Hori M., Tsutsumi S., Yasumoto Y., Ito M., Suzuki M., Tanaka F.S., Kyogoku S., Nakamura M., Tabuchi T., Fukunaga I., et al. Cervical spondylosis: Evaluation of microstructural changes in spinal cord white matter and gray matter by diffusional kurtosis imaging. Magn. Reson. Imaging. 2014;32:428–432. doi: 10.1016/j.mri.2014.01.018. PubMed DOI
Hori M., Fukunaga I., Masutani Y., Nakanishi A., Shimoji K., Kamagata K., Asahi K., Hamasaki N., Suzuki Y., Aoki S. New diffusion metrics for spondylotic myelopathy at an early clinical stage. Eur. Radiol. 2012;22:1797–1802. doi: 10.1007/s00330-012-2410-9. PubMed DOI PMC
Lee J.W., Kim J.H., Park J.B., Park K.W., Yeom J.S., Lee G.Y., Kang H.S. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: Preliminary results. Skeletal Radiol. 2011;40:1543–1551. doi: 10.1007/s00256-011-1161-z. PubMed DOI
Ellingson B.M., Salamon N., Grinstead J.W., Holly L.T. Diffusion tensor imaging predicts functional impairment in mild-to-moderate cervical spondylotic myelopathy. Spine J. 2014;14:2589–2597. doi: 10.1016/j.spinee.2014.02.027. PubMed DOI PMC
Wen C.Y., Cui J.L., Liu H.S., Mak K.C., Cheung W.Y., Luk K.D.K., Hu Y. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy. Radiology. 2014;270:197–204. doi: 10.1148/radiol.13121885. PubMed DOI
Jones J.G.A., Cen S.Y., Lebel R.M., Hsieh P.C., Law M. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. Am. J. Neuroradiol. 2013;34:471–478. doi: 10.3174/ajnr.A3199. PubMed DOI PMC
Uda T., Takami T., Tsuyuguchi N., Sakamoto S., Yamagata T., Ikeda H., Nagata T., Ohata K. Assessment of cervical spondylotic myelopathy using diffusion tensor magnetic resonance imaging parameter at 3.0 tesla. Spine. 2013;38:407–414. doi: 10.1097/BRS.0b013e31826f25a3. PubMed DOI
Banaszek A., Bladowska J., Szewczyk P., Podgórski P., Sąsiadek M. Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. Eur. Spine J. 2014;23:1523–1530. doi: 10.1007/s00586-014-3323-x. PubMed DOI
Wen C.Y., Cui J.L., Mak K.C., Luk K.D.K., Hu Y. Diffusion tensor imaging of somatosensory tract in cervical spondylotic myelopathy and its link with electrophysiological evaluation. Spine J. 2014;14:1493–1500. doi: 10.1016/j.spinee.2013.08.052. PubMed DOI
Maki S., Koda M., Ota M., Oikawa Y., Kamiya K., Inada T., Furuya T., Takahashi K., Masuda Y., Matsumoto K., et al. Reduced Field-of-View Diffusion Tensor Imaging of the Spinal Cord Shows Motor Dysfunction of the Lower Extremities in Patients with Cervical Compression Myelopathy. Spine. 2018;43:89–96. doi: 10.1097/BRS.0000000000001123. PubMed DOI
Maki S., Koda M., Saito J., Takahashi S., Inada T., Kamiya K., Ota M., Iijima Y., Masuda Y., Matsumoto K., et al. Tract-Specific Diffusion Tensor Imaging Reveals Laterality of Neurological Symptoms in Patients with Cervical Compression Myelopathy. World Neurosurg. 2016;96:184–190. doi: 10.1016/j.wneu.2016.08.129. PubMed DOI
Cui J.L., Li X., Chan T.Y., Mak K.C., Luk K.D.K., Hu Y. Quantitative assessment of column-specific degeneration in cervical spondylotic myelopathy based on diffusion tensor tractography. Eur. Spine J. 2015;24:41–47. doi: 10.1007/s00586-014-3522-5. PubMed DOI
Budzik J.F., Balbi V., Le Thuc V., Duhamel A., Assaker R., Cotten A. Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy. Eur. Radiol. 2011;21:426–433. doi: 10.1007/s00330-010-1927-z. PubMed DOI
Seif M., David G., Huber E., Vallotton K., Curt A., Freund P. Cervical Cord Neurodegeneration in Traumatic and Non-Traumatic Spinal Cord Injury. J. Neurotrauma. 2020;37:860–867. doi: 10.1089/neu.2019.6694. PubMed DOI PMC
Wang K.Y., Idowu O., Thompson C.B., Orman G., Myers C., Riley L.H., Carrino J.A., Flammang A., Gilson W., Sadowsky C.L., et al. Tract-Specific Diffusion Tensor Imaging in Cervical Spondylotic Myelopathy Before and After Decompressive Spinal Surgery: Preliminary Results. Clin. Neuroradiol. 2017;27:61–69. doi: 10.1007/s00062-015-0418-7. PubMed DOI
Rajasekaran S., Yerramshetty J.S., Chittode V.S., Kanna R.M., Balamurali G., Shetty A.P. The Assessment of Neuronal Status in Normal and Cervical Spondylotic Myelopathy Using Diffusion Tensor Imaging. Spine. 2014;39:1183–1189. doi: 10.1097/BRS.0000000000000369. PubMed DOI
Zhang M., Ou-Yang H., Liu J., Jin D., Wang C., Zhang X., Zhao Q., Liu X., Liu Z., Lang N., et al. Utility of Advanced DWI in the Detection of Spinal Cord Microstructural Alterations and Assessment of Neurologic Function in Cervical Spondylotic Myelopathy Patients. J. Magn. Reson. Imaging. 2022;55:930–940. doi: 10.1002/jmri.27894. PubMed DOI
Mamata H., Jolesz F.A., Maier S.E. Apparent diffusion coefficient and fractional anisotropy in spinal cord: Age and cervical spondylosis-related changes. J. Magn. Reson. Imaging. 2005;22:38–43. doi: 10.1002/jmri.20357. PubMed DOI
Rao A., Soliman H., Kaushal M., Motovylyak O., Vedantam A., Budde M.D., Schmit B., Wang M., Kurpad S.N. Diffusion Tensor Imaging in a Large Longitudinal Series of Patients with Cervical Spondylotic Myelopathy Correlated with Long-Term Functional Outcome. Neurosurgery. 2018;83:753–760. doi: 10.1093/neuros/nyx558. PubMed DOI
Mair W.G.P., Druckman R. The pathology of spinal cord lesions and their relation to the clinical features in protrusion of cervical intervertebral discs (a report of four cases) Brain. 1953;76:70–91. doi: 10.1093/brain/76.1.70. PubMed DOI
Lindberg P.G., Sanchez K., Ozcan F., Rannou F., Poiraudeau S., Feydy A., Maier M.A. Correlation of force control with regional spinal DTI in patients with cervical spondylosis without signs of spinal cord injury on conventional MRI. Eur. Radiol. 2016;26:733–742. doi: 10.1007/s00330-015-3876-z. PubMed DOI
Behrens T.E.J., Woolrich M.W., Jenkinson M., Johansen-Berg H., Nunes R.G., Clare S., Matthews P.M., Brady J.M., Smith S.M. Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging. Magn. Reson. Med. 2003;50:1077–1088. doi: 10.1002/mrm.10609. PubMed DOI
Panagiotaki E., Schneider T., Siow B., Hall M.G., Lythgoe M.F., Alexander D.C. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. Neuroimage. 2012;59:2241–2254. doi: 10.1016/j.neuroimage.2011.09.081. PubMed DOI
Zhang H., Schneider T., Wheeler-Kingshott C.A., Alexander D.C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–1016. doi: 10.1016/j.neuroimage.2012.03.072. PubMed DOI
Le Bihan D. What can we see with IVIM MRI? Neuroimage. 2019;187:56–67. doi: 10.1016/j.neuroimage.2017.12.062. PubMed DOI
Lévy S., Rapacchi S., Massire A., Troalen T., Feiweier T., Guye M., Callot V. Intravoxel Incoherent Motion at 7 Tesla to quantify human spinal cord perfusion: Limitations and promises. Magn. Reson. Med. 2020;84:1198–1217. doi: 10.1002/mrm.28195. PubMed DOI
Lévy S., Freund P., Callot V., Seif M. Spinal cord perfusion mapping using Intra-Voxel Incoherent Motion at 3T in healthy individuals and Degenerative Cervical Myelopathy patients; Proceedings of the 29th Annual Meeting ISMRM; Virtual. 15–20 May 2021; p. 3462.
Cohen-Adad J., Wheeler-Kingshott C. Quantitative MRI of the Spinal Cord. Elsevier; Amsterdam, The Netherlands: 2014.
Schmierer K., Scaravilli F., Altmann D.R., Barker G.J., Miller D.H. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 2004;56:407–415. doi: 10.1002/ana.20202. PubMed DOI
Paliwal M., Weber K.A., Hopkins B.S., Cantrell D.R., Hoggarth M.A., Elliott J.M., Dahdaleh N.S., Mackey S., Parrish T.D., Dhaher Y., et al. Magnetization Transfer Ratio and Morphometrics of the Spinal Cord Associates with Surgical Recovery in Patients with Degenerative Cervical Myelopathy. World Neurosurg. 2020;144:e939–e947. doi: 10.1016/j.wneu.2020.09.148. PubMed DOI PMC
Öz G., Alger J.R., Barker P.B., Bartha R., Bizzi A., Boesch C., Bolan P.J., Brindle K.M., Cudalbu C., Dinçer A., et al. Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology. 2014;270:658–679. doi: 10.1148/radiol.13130531. PubMed DOI PMC
Öz G. Contemporary Clinical Neuroscience. Springer; Cham, Switzerland: 2016. Imaging Neurodegeneration: What Can Magnetic Resonance Spectroscopy Contribute? pp. 1–11.
Aleksanderek I., McGregor S.M.K., Stevens T.K., Goncalves S., Bartha R., Duggal N. Cervical spondylotic myelopathy: Metabolite changes in the primary motor cortex after surgery. Radiology. 2017;282:817–825. doi: 10.1148/radiol.2016152083. PubMed DOI
Holly L.T., Ellingson B.M., Salamon N. Metabolic imaging using proton magnetic spectroscopy as a predictor of outcome after surgery for cervical spondylotic myelopathy. Clin. Spine Surg. 2017;30:E615–E619. doi: 10.1097/BSD.0000000000000248. PubMed DOI PMC
Ellingson B.M., Salamon N., Hardy A.J., Holly L.T. Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion mri and proton mr spectroscopy. PLoS ONE. 2015;10:e0139451. doi: 10.1371/journal.pone.0139451. PubMed DOI PMC
Aleksanderek I., Stevens T.K., Goncalves S., Bartha R., Duggal N. Metabolite and functional profile of patients with cervical spondylotic myelopathy. J. Neurosurg. Spine. 2017;26:547–553. doi: 10.3171/2016.9.SPINE151507. PubMed DOI
Salamon N., Ellingson B.M., Nagarajan R., Gebara N., Thomas A., Holly L.T. Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord. 2013;51:558–563. doi: 10.1038/sc.2013.31. PubMed DOI PMC
Wilson M., Andronesi O., Barker P.B., Bartha R., Bizzi A., Bolan P.J., Brindle K.M., Choi I., Cudalbu C., Dydak U., et al. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magn. Reson. Med. 2019;82:527–550. doi: 10.1002/mrm.27742. PubMed DOI PMC
Wyss P.O., Huber E., Curt A., Kollias S., Freund P., Henning A. MR spectroscopy of the cervical spinal cord in chronic spinal cord injury. Radiology. 2019;291:131–138. doi: 10.1148/radiol.2018181037. PubMed DOI
Maier I.L., Hofer S., Eggert E., Schregel K., Psychogios M.-N., Frahm J., Bähr M., Liman J. T1 Mapping Quantifies Spinal Cord Compression in Patients with Various Degrees of Cervical Spinal Canal Stenosis. Front. Neurol. 2020;11:1427. doi: 10.3389/fneur.2020.574604. PubMed DOI PMC
Baucher G., Rasoanandrianina H., Levy S., Pini L., Troude L., Roche P.-H., Callot V. T1 Mapping for Microstructural Assessment of the Cervical Spinal Cord in the Evaluation of Patients with Degenerative Cervical Myelopathy. Am. J. Neuroradiol. 2021;42:1348–1357. doi: 10.3174/ajnr.A7157. PubMed DOI PMC
Liu H., MacMillian E.L., Jutzeler C.R., Ljungberg E., MacKay A.L., Kolind S.H., Mädler B., Li D.K.B., Dvorak M.F., Curt A., et al. Assessing structure and function of myelin in cervical spondylotic myelopathy. Neurology. 2017;89:602–610. doi: 10.1212/WNL.0000000000004197. PubMed DOI PMC
Dvorak A.V., Ljungberg E., Vavasour I.M., Lee L.E., Abel S., Li D.K.B., Traboulsee A., MacKay A.L., Kolind S.H. Comparison of multi echo T2 relaxation and steady state approaches for myelin imaging in the central nervous system. Sci. Rep. 2021;11:1369. doi: 10.1038/s41598-020-80585-7. PubMed DOI PMC
Glover G.H. Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clin. N. Am. 2011;22:133–139. doi: 10.1016/j.nec.2010.11.001. PubMed DOI PMC
Duggal N., Rabin D., Bartha R., Barry R.L., Gati J.S., Kowalczyk I., Fink M. Brain reorganization in patients with spinal cord compression evaluated using fMRI. Neurology. 2010;74:1048–1054. doi: 10.1212/WNL.0b013e3181d6b0ea. PubMed DOI
Tan Y., Zhou F., Wu L., Liu Z., Zeng X., Gong H., He L. Alteration of Regional Homogeneity within the Sensorimotor Network after Spinal Cord Decompression in Cervical Spondylotic Myelopathy: A Resting-State fMRI Study. Biomed Res. Int. 2015;2015:1–6. doi: 10.1155/2015/647958. PubMed DOI PMC
Cronin A.E., Detombe S.A., Duggal C.A., Duggal N., Bartha R. Spinal cord compression is associated with brain plasticity in degenerative cervical myelopathy. Brain Commun. 2021;3:fcab131. doi: 10.1093/braincomms/fcab131. PubMed DOI PMC
Hrabálek L., Hok P., Hluštík P., Čecháková E., Wanek T., Otruba P., Vaverka M., Kaňovský P. Longitudinal brain activation changes related to electrophysiological findings in patients with cervical spondylotic myelopathy before and after spinal cord decompression: An fMRI study. Acta Neurochir. 2018;160:923–932. doi: 10.1007/s00701-018-3520-1. PubMed DOI
Liu X., Qian W., Jin R., Li X., Luk K.D., Wu E.X., Hu Y. Amplitude of Low Frequency Fluctuation (ALFF) in the Cervical Spinal Cord with Stenosis: A Resting State fMRI Study. PLoS ONE. 2016;11:e0167279. doi: 10.1371/journal.pone.0167279. PubMed DOI PMC
Powers J., Ioachim G., Stroman P. Ten Key Insights into the Use of Spinal Cord fMRI. Brain Sci. 2018;8:173. doi: 10.3390/brainsci8090173. PubMed DOI PMC
Eippert F., Kong Y., Jenkinson M., Tracey I., Brooks J.C.W. Denoising spinal cord fMRI data: Approaches to acquisition and analysis. Neuroimage. 2017;154:255–266. doi: 10.1016/j.neuroimage.2016.09.065. PubMed DOI
Ellingson B.M., Woodworth D.C., Leu K., Salamon N., Holly L.T. Spinal Cord Perfusion MR Imaging Implicates Both Ischemia and Hypoxia in the Pathogenesis of Cervical Spondylosis. World Neurosurg. 2019;128:e773–e781. doi: 10.1016/j.wneu.2019.04.253. PubMed DOI PMC
Uemura K., Matsumura A., Isobe T., Anno I., Kawamura H., Minami M., Tsukada A. Perfusion-Weighted Magnetic Resonance Imaging of the Spinal Cord in Cervical Spondylotic Myelopathy. Neurol. Med. Chir. 2006;46:581–588. doi: 10.2176/nmc.46.581. PubMed DOI
Zhou F., Huang M., Wu L., Tan Y., Guo J., Zhang Y., He L., Gong H. Altered perfusion of the sensorimotor cortex in patients with cervical spondylotic myelopathy: An arterial spin labeling study. J. Pain Res. 2018;11:181–190. doi: 10.2147/JPR.S148076. PubMed DOI PMC
Sherman J.L., Nassaux P.Y., Citrin C.M. Measurements of the normal cervical spinal cord on MR imaging. Am. J. Neuroradiol. 1990;11:369–372. PubMed PMC
Cohen-Adad J., Alonso-Ortiz E., Abramovic M., Arneitz C., Atcheson N., Barlow L., Barry R.L., Barth M., Battiston M., Büchel C., et al. Generic acquisition protocol for quantitative MRI of the spinal cord. Nat. Protoc. 2021;16:4611–4632. doi: 10.1038/s41596-021-00588-0. PubMed DOI PMC
Cohen-Adad J., Alonso-Ortiz E., Abramovic M., Arneitz C., Atcheson N., Barlow L., Barry R.L., Barth M., Battiston M., Büchel C., et al. Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Sci. Data. 2021;8:219. doi: 10.1038/s41597-021-00941-8. PubMed DOI PMC
Samson R.S., Lévy S., Schneider T., Smith A.K., Smith S.A., Cohen-Adad J., Gandini Wheeler-Kingshott C.A.M. ZOOM or Non-ZOOM? Assessing Spinal Cord Diffusion Tensor Imaging Protocols for Multi-Centre Studies. PLoS ONE. 2016;11:e0155557. doi: 10.1371/journal.pone.0155557. PubMed DOI PMC
Martin A.R., De Leener B., Cohen-Adad J., Cadotte D.W., Kalsi-Ryan S., Lange S.F., Tetreault L., Nouri A., Crawley A., Mikulis D.J., et al. Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability. AJNR Am. J. Neuroradiol. 2017;38:1257–1265. doi: 10.3174/ajnr.A5163. PubMed DOI PMC
Andersson J.L.R., Skare S., Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage. 2003;20:870–888. doi: 10.1016/S1053-8119(03)00336-7. PubMed DOI
Andersson J.L.R., Sotiropoulos S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–1078. doi: 10.1016/j.neuroimage.2015.10.019. PubMed DOI PMC
Tuch D.S., Reese T.G., Wiegell M.R., Makris N., Belliveau J.W., Van Wedeen J. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 2002;48:577–582. doi: 10.1002/mrm.10268. PubMed DOI
Caruyer E., Lenglet C., Sapiro G., Deriche R. Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 2013;69:1534–1540. doi: 10.1002/mrm.24736. PubMed DOI PMC
Deelchand D.K., Ho M.-L., Nestrasil I. Ultra-High-Field Imaging of the Pediatric Brain and Spinal Cord. Magn. Reson. Imaging Clin. N. Am. 2021;29:643–653. doi: 10.1016/j.mric.2021.06.013. PubMed DOI
Roussel T., Le Fur Y., Guye M., Viout P., Ranjeva J., Callot V. Respiratory-triggered quantitative MR spectroscopy of the human cervical spinal cord at 7 T. Magn. Reson. Med. 2022;87:2600–2612. doi: 10.1002/mrm.29182. PubMed DOI
Juchem C., Cudalbu C., Graaf R.A., Gruetter R., Henning A., Hetherington H.P., Boer V.O. B 0 shimming for in vivo magnetic resonance spectroscopy: Experts’ consensus recommendations. NMR Biomed. 2021;34:e4350. doi: 10.1002/nbm.4350. PubMed DOI
Andronesi O.C., Bhattacharyya P.K., Bogner W., Choi I., Hess A.T., Lee P., Meintjes E.M., Tisdall M.D., Zaitsev M., Kouwe A. Motion correction methods for MRS: Experts’ consensus recommendations. NMR Biomed. 2021;34:e4364. doi: 10.1002/nbm.4364. PubMed DOI PMC
Deelchand D.K., Henry P., Joers J.M., Auerbach E.J., Park Y.W., Kara F., Ratai E., Kantarci K., Öz G. Plug-and-play advanced magnetic resonance spectroscopy. Magn. Reson. Med. 2022;87:2613–2620. doi: 10.1002/mrm.29164. PubMed DOI PMC
De Leener B., Fonov V.S., Collins D.L., Callot V., Stikov N., Cohen-Adad J. PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage. 2018;165:170–179. doi: 10.1016/j.neuroimage.2017.10.041. PubMed DOI
De Leener B., Lévy S., Dupont S.M., Fonov V.S., Stikov N., Louis Collins D., Callot V., Cohen-Adad J. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage. 2017;145:24–43. doi: 10.1016/j.neuroimage.2016.10.009. PubMed DOI
McLachlin S., Leung J., Sivan V., Quirion P., Wilkie P., Cohen-Adad J., Whyne C.M., Hardisty M.R. Spatial correspondence of spinal cord white matter tracts using diffusion tensor imaging, fibre tractography, and atlas-based segmentation. Neuroradiology. 2021;63:373–380. doi: 10.1007/s00234-021-02635-9. PubMed DOI
Dostál M., Keřkovský M., Staffa E., Bednařík J., Šprláková-Puková A., Mechl M. Voxelwise analysis of diffusion MRI of cervical spinal cord using tract-based spatial statistics. Magn. Reson. Imaging. 2020;73:23–30. doi: 10.1016/j.mri.2020.07.008. PubMed DOI
Gros C., De Leener B., Badji A., Maranzano J., Eden D., Dupont S.M., Talbott J., Zhuoquiong R., Liu Y., Granberg T., et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 2019;184:901–915. doi: 10.1016/j.neuroimage.2018.09.081. PubMed DOI PMC
Perone C.S., Calabrese E., Cohen-Adad J. Spinal cord gray matter segmentation using deep dilated convolutions. Sci. Rep. 2018;8:5966. doi: 10.1038/s41598-018-24304-3. PubMed DOI PMC
Jenkinson M., Beckmann C.F., Behrens T.E.J., Woolrich M.W., Smith S.M. FSL. Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Penny W., Friston K., Ashburner J., Kiebel S., Nichols T. Statistical Parametric Mapping. Elsevier; Amsterdam, The Netherlands: 2007.
Garyfallidis E., Brett M., Amirbekian B., Rokem A., van der Walt S., Descoteaux M., Nimmo-Smith I. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 2014;8:8. doi: 10.3389/fninf.2014.00008. PubMed DOI PMC
Provencher S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993;30:672–679. doi: 10.1002/mrm.1910300604. PubMed DOI
Li X., Morgan P.S., Ashburner J., Smith J., Rorden C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods. 2016;264:47–56. doi: 10.1016/j.jneumeth.2016.03.001. PubMed DOI
Tetreault L., Kopjar B., Nouri A., Arnold P., Barbagallo G., Bartels R., Qiang Z., Singh A., Zileli M., Vaccaro A., et al. The modified Japanese Orthopaedic Association scale: Establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur. Spine J. 2017;26:78–84. doi: 10.1007/s00586-016-4660-8. PubMed DOI
Holly L.T., Freitas B., McArthur D.D.L., Salamon N. Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy: Laboratory investigation. J. Neurosurg. Spine. 2009;10:194–200. doi: 10.3171/2008.12.SPINE08367. PubMed DOI