Monitoring morphometric drift in lifelong learning segmentation of the spinal cord
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41585468
PubMed Central
PMC12828353
DOI
10.1162/imag.a.1105
PII: IMAG.a.1105
Knihovny.cz E-zdroje
- Klíčová slova
- MLOps, MRI, lifelong learning, morphometric drift, segmentation, spinal cord,
- Publikační typ
- časopisecké články MeSH
Morphometric measures derived from spinal cord segmentations can serve as diagnostic and prognostic biomarkers in neurological diseases and injuries affecting the spinal cord. For instance, the spinal cord cross-sectional area can be used to monitor cord atrophy in multiple sclerosis and to characterize compression in degenerative cervical myelopathy. While robust, automatic segmentation methods to a wide variety of contrasts and pathologies have been developed over the past few years, whether their predictions are stable as the model is updated using new datasets has not been assessed. This is particularly important for deriving normative values from healthy participants. In this study, we present a spinal cord segmentation model trained on a multisite (n = 75 sites, 1,631 participants) dataset, including 9 different MRI contrasts and several spinal cord pathologies. We also introduce a lifelong learning framework to automatically monitor the morphometric drift as the model is updated using additional datasets. The framework is triggered by an automatic GitHub Actions workflow every time a new model is created, recording the morphometric values derived from the model's predictions over time. As a real-world application of the proposed framework, we employed the spinal cord segmentation model to update a recently introduced normative database of healthy participants containing commonly used measures of spinal cord morphometry. Results showed that (i) our model performs well compared with its previous versions and existing pathology-specific models on the lumbar spinal cord, images with severe compression, and in the presence of intramedullary lesions and/or atrophy achieving an average Dice score of 0.95 ± 0.03; (ii) the automatic workflow for monitoring morphometric drift provides a quick feedback loop for developing future segmentation models; and (iii) the scaling factor required to update the database of morphometric measures is nearly constant among slices across the given vertebral levels, showing minimum drift between the current and previous versions of the model monitored by the framework. The code and model are open source and accessible via Spinal Cord Toolbox v7.0.
Aix Marseille Univ CNRS CRMBM Marseille France
APHM CHU Timone CEMEREM Marseille France
Barlo MS Centre Division of Neurology Department of Medicine St Michael's Hospital Toronto Canada
Canada CIFAR AI Chair Toronto ON Canada
Centre de Recherche du CHU Sainte Justine Université de Montréal Montréal QC Canada
Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
Department of Medicine Division of Neurology University of British Columbia BC Canada
Department of Neuro Urology Balgrist University Hospital University of Zurich Zurich Switzerland
Department of Neurology Faculty of Medicine and Dentistry Palacký University Olomouc Olomouc Czechia
Department of Neurology Pitie Salpetriere Hospital Paris France
Department of Neurology University Hospital Brno Brno Czechia
Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
Department of Neuroradiology Neurocenter of Southern Switzerland Lugano Switzerland
Department of Neuroradiology Rennes University Hospital Rennes France
Department of Neuroscience Imaging and Clinical Sciences Università G d'Annunzio Chieti Italy
Department of Neuroscience Université de Montréal Montréal QC Canada
Department of Neurosurgery University of California Davis Davis CA United States
Department of Radiology and Medical Informatics University of Geneva Geneva Switzerland
Division of Neurosurgery Krembil Neuroscience Centre University Health Network Toronto ON Canada
EMPENN Research Team IRISA CNRS‑INSERM‑INRIA Rennes Université Rennes France
Faculty of Medicine Masaryk University Brno Czechia
Functional Neuroimaging Unit CRIUGM Université de Montréal Montreal QC Canada
Institute of Medical Science University of Toronto Toronto ON Canada
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
Max Planck Research Group MR Physics Max Planck Institute for Human Development Berlin Germany
Mila Quebec AI Institute Montreal QC Canada
Multimodal and Functional Imaging Laboratory Central European Institute of Technology Brno Czechia
Neuro 10 Institute Ecole Polytechnique Fédérale de Lausanne Geneva Switzerland
Neurology Department Rennes University Hospital Rennes France
NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal Montreal QC Canada
Physikalisch Technische Bundesanstalt Braunschweig and Berlin Germany
Praxis Spinal Cord Institute Vancouver BC Canada
Spinal Cord Injury Center Balgrist University Hospital University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Agirre, E., Jonsson, A., & Larcher, A. (2021). Framing lifelong learning as autonomous deployment: Tune once live forever. In Lecture Notes in Electrical Engineering (pp. 331–336). Springer. 10.1007/978-981-15-9323-9_29 DOI
Alla, S., & Adari, S. K. (2020). Beginning MLOps with MLFlow: Deploy models in AWS SageMaker, Google cloud, and Microsoft azure (1st ed.). Apress. 10.1007/978-1-4842-6549-9 DOI
Bautin, P., & Cohen-Adad, J. (2021). Minimum detectable spinal cord atrophy with automatic segmentation: Investigations using an open-access dataset of healthy participants. NeuroImage. Clinical, 32, 102849. 10.1016/j.nicl.2021.102849 PubMed DOI PMC
Bédard, S., & Cohen-Adad, J. (2022). Automatic measure and normalization of spinal cord cross-sectional area using the pontomedullary junction. Frontiers in Neuroimaging, 1, 1031253. 10.3389/fnimg.2022.1031253 PubMed DOI PMC
Bédard, S., Karthik, E. N., Tsagkas, C., Pravatà, E., Granziera, C., Smith, A., Weber, K. A., Ii, & Cohen-Adad, J. (2025). Towards contrast-agnostic soft segmentation of the spinal cord. Medical Image Analysis, 101, 103473. 10.1016/j.media.2025.103473 PubMed DOI
Bédard, S., Valošek, J., Seif, M., Curt, A., Schading, S., Pfender, N., Freund, P., Hupp, M., & Cohen-Adad, J. (2024). Normalizing spinal cord compression morphometric measures: Application in degenerative cervical myelopathy. medRxiv. 10.1101/2024.03.13.24304177 PubMed DOI
Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv [cs.CV]. http://arxiv.org/abs/1706.05587
Chen, M., Carass, A., Oh, J., Nair, G., Pham, D. L., Reich, D. S., & Prince, J. L. (2013). Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. NeuroImage, 83, 1051–1062. 10.1016/j.neuroimage.2013.07.060 PubMed DOI PMC
Cohen-Adad, J., Alonso-Ortiz, E., Abramovic, M., Arneitz, C., Atcheson, N., Barlow, L., Barry, R. L., Barth, M., Battiston, M., Büchel, C., Budde, M., Callot, V., Combes, A. J. E., De Leener, B., Descoteaux, M., de Sousa, P. L., Dostál, M., Doyon, J., Dvorak, A., … Xu, J. (2021a). Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols, 16(10), 4611–4632. 10.1038/s41596-021-00588-0 PubMed DOI PMC
Cohen-Adad, J., Alonso-Ortiz, E., Abramovic, M., Arneitz, C., Atcheson, N., Barlow, L., Barry, R. L., Barth, M., Battiston, M., Büchel, C., Budde, M., Callot, V., Combes, A. J. E., De Leener, B., Descoteaux, M., de Sousa, P. L., Dostál, M., Doyon, J., Dvorak, A., … Xu, J. (2021b). Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific Data, 8(1), 219. 10.1038/s41597-021-00941-8 PubMed DOI PMC
Commowick, O., Istace, A., Kain, M., Laurent, B., Leray, F., Simon, M., Pop, S. C., Girard, P., Améli, R., Ferré, J.-C., Kerbrat, A., Tourdias, T., Cervenansky, F., Glatard, T., Beaumont, J., Doyle, S., Forbes, F., Knight, J., Khademi, A., … Barillot, C. (2018). Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Scientific Reports, 8(1), 13650. 10.1038/s41598-018-31911-7 PubMed DOI PMC
Connor, J. R., Thornton, W. A., Weber, K. A., Pfyffer, D., Freund, P., Tefertiller, C., & Smith, A. C. (2025). Reliability of SCIseg automated measurement of midsagittal tissue bridges in spinal cord injuries using an external dataset. Topics in Spinal Cord Injury Rehabilitation, 31(2), 39–49. 10.46292/sci25-00015 PubMed DOI PMC
De Leener, B., Kadoury, S., & Cohen-Adad, J. (2014). Robust, accurate and fast automatic segmentation of the spinal cord. NeuroImage, 98, 528–536. 10.1016/j.neuroimage.2014.04.051 PubMed DOI
De Leener, B., Lévy, S., Dupont, S. M., Fonov, V. S., Stikov, N., Louis Collins, D., Callot, V., & Cohen-Adad, J. (2017). SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage, 145(Pt A), 24–43. 10.1016/j.neuroimage.2016.10.009 PubMed DOI
Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., & Heng, P.-A. (2017). 3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis, 41, 40–54. 10.1016/j.media.2017.05.001 PubMed DOI
González, C., Fuchs, M., Santos, D. P. dos, Matthies, P., Trenz, M., Grüning, M., Chaudhari, A., Larson, D. B., Othman, A., Kim, M., Nensa, F., & Mukhopadhyay, A. (2024). Regulating radiology AI medical devices that evolve in their lifecycle. arXiv [cs.CY]. http://arxiv.org/abs/2412.20498
Gros, C., De Leener, B., Badji, A., Maranzano, J., Eden, D., Dupont, S. M., Talbott, J., Zhuoquiong, R., Liu, Y., Granberg, T., Ouellette, R., Tachibana, Y., Hori, M., Kamiya, K., Chougar, L., Stawiarz, L., Hillert, J., Bannier, E., Kerbrat, A., … Cohen-Adad, J. (2019). Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage, 184, 901–915. 10.1016/j.neuroimage.2018.09.081 PubMed DOI PMC
Horáková, M., Horák, T., Valošek, J., Rohan, T., Korit’áková, E., Dostál, M., Kočica, J., Skutil, T., Keřkovský, M., Kadaňka, Z., Jr, Bednařík, P., Svátková, A., Hluštík, P., & Bednařík, J. (2022). Semi-automated detection of cervical spinal cord compression with the Spinal Cord Toolbox. Quantitative Imaging in Medicine and Surgery, 12(4), 2261–2279. 10.21037/qims-21-782 PubMed DOI PMC
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18(2), 203–211. 10.1038/s41592-020-01008-z PubMed DOI
Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., & Jaeger, P. F. (2024). NnU-Net revisited: A call for rigorous validation in 3D medical image segmentation. arXiv [cs.CV]. 10.48550/ARXIV.2404.09556 DOI
Joo, B., Park, H. J., Park, M., Suh, S. H., & Ahn, S. J. (2025). Establishing normative values for entire spinal cord morphometrics in East Asian young adults. Korean Journal of Radiology: Official Journal of the Korean Radiological Society, 26(2), 146–155. 10.3348/kjr.2024.0907 PubMed DOI PMC
Jwa, A. S., Norgaard, M., & Poldrack, R. A. (2025). Can I have your data? Recommendations and practical tips for sharing neuroimaging data upon a direct personal request. Imaging Neuroscience, 3, imag_a_00508. 10.1162/imag_a_00508 PubMed DOI PMC
Kandpal, N., Lester, B., Muqeeth, M., Mascarenhas, A., Evans, M., Baskaran, V., Huang, T., Liu, H., & Raffel, C. (2023). Git-Theta: A Git extension for collaborative development of machine learning models. In arXiv [cs.LG]. http://arxiv.org/abs/2306.04529
Karthik, E. N., Kerbrat, A., Labauge, P., Granberg, T., Talbott, J., Reich, D. S., Filippi, M., Bakshi, R., Callot, V., Chandar, S., & Cohen-Adad, J. (2022). Segmentation of Multiple Sclerosis lesions across hospitals: Learn continually or train from scratch? arXiv [cs.CV]. http://arxiv.org/abs/2210.15091
Karthik, E. N., Valošek, J., Farner, L., Pfyffer, D., Schading-Sassenhausen, S., Lebret, A., David, G., Smith, A. C., Weber, K. A., II, Seif, M., RHSCIR Network Imaging Group, Freund, P., & Cohen-Adad, J. (2024). SCIsegV2: A universal tool for segmentation of intramedullary lesions in spinal cord injury. arXiv [cs.CV]. http://arxiv.org/abs/2407.17265
Kato, F., Yukawa, Y., Suda, K., Yamagata, M., & Ueta, T. (2012). Normal morphology, age-related changes and abnormal findings of the cervical spine. Part II: Magnetic resonance imaging of over 1,200 asymptomatic subjects. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 21, 1499–1507. https://link.springer.com/article/10.1007/s00586-012-2176-4 PubMed PMC
Labounek, R., Bondy, M. T., Paulson, A. L., Bédard, S., Abramovic, M., Alonso-Ortiz, E., Atcheson, N. T., Barlow, L. R., Barry, R. L., Barth, M., Battiston, M., Büchel, C., Budde, M. D., Callot, V., Combes, A., Leener, B. D., Descoteaux, M., Loureiro de Sousa, P., Dostál, M., … Nestrašil, I. (2024). Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study. bioRxiv. 10.1101/2024.04.29.591421 PubMed DOI PMC
Lemay, A., Gros, C., Karthik, E. N., & Cohen-Adad, J. (2022). Label fusion and training methods for reliable representation of inter-rater uncertainty. arXiv [eess.IV]. http://arxiv.org/abs/2202.07550
Liu, B., & Mazumder, S. (2021). Lifelong and continual learning dialogue systems: Learning during conversation. Proceedings of the . . . AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, 35(17), 15058–15063. 10.1609/aaai.v35i17.17768 DOI
Losseff, N. A., Webb, S. L., O’Riordan, J. I., Page, R., Wang, L., Barker, G. J., Tofts, P. S., McDonald, W. I., Miller, D. H., & Thompson, A. J. (1996). Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain: A Journal of Neurology, 119(Pt 3), 701–708. 10.1093/brain/119.3.701 PubMed DOI
Lukas, C., Sombekke, M. H., Bellenberg, B., Hahn, H. K., Popescu, V., Bendfeldt, K., Radue, E. W., Gass, A., Borgwardt, S. J., Kappos, L., Naegelin, Y., Knol, D. L., Polman, C. H., Geurts, J. J. G., Barkhof, F., & Vrenken, H. (2013). Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology, 269(2), 542–552. 10.1148/radiol.13122566 PubMed DOI
Martin, A. R., De Leener, B., Cohen-Adad, J., Kalsi-Ryan, S., Cadotte, D. W., Wilson, J. R., Tetreault, L., Nouri, A., Crawley, A., Mikulis, D. J., Ginsberg, H., Massicotte, E. M., & Fehlings, M. G. (2018). Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One, 13(4), e0195733. 10.1371/journal.pone.0195733 PubMed DOI PMC
Masse-Gignac, N., Flórez-Jiménez, S., Mac-Thiong, J.-M., & Duong, L. (2023). Attention-gated U-Net networks for simultaneous axial/sagittal planes segmentation of injured spinal cords. Journal of Applied Clinical Medical Physics, 24(10), e14123. 10.1002/acm2.14123 PubMed DOI PMC
Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully convolutional neural networks for volumetric medical image segmentation. arXiv [cs.CV]. http://arxiv.org/abs/1606.04797
Molinier, N., Bédard, S., Boudreau, M., Cohen-Adad, J., Callot, V., Alonso-Ortiz, E., Pageot, C., & Laines-Medina, N. (2024). “whole-spine” [Dataset]. OpenNeuro. 10.18112/openneuro.ds005616.v1.0.1 DOI
Naga Karthik, E., McGinnis, J., Wurm, R., Ruehling, S., Graf, R., Valosek, J., Benveniste, P.-L., Lauerer, M., Talbott, J., Bakshi, R., Tauhid, S., Shepherd, T., Berthele, A., Zimmer, C., Hemmer, B., Rueckert, D., Wiestler, B., Kirschke, J. S., Cohen-Adad, J., & Mühlau, M. (2025). Automatic segmentation of spinal cord lesions in MS: A robust tool for axial T2-weighted MRI scans. medRxiv. 10.1101/2025.01.22.25320959 PubMed DOI PMC
Naga Karthik, E., Valošek, J., Smith, A. C., Pfyffer, D., Schading-Sassenhausen, S., Farner, L., Weber, K. A., 2nd, Freund, P., & Cohen-Adad, J. (2025). SCIseg: Automatic segmentation of intramedullary lesions in spinal cord injury on T2-weighted MRI scans. Radiology. Artificial Intelligence, 7(1), e240005. 10.1148/ryai.240005 PubMed DOI PMC
Nozawa, K., Maki, S., Furuya, T., Okimatsu, S., Inoue, T., Yunde, A., Miura, M., Shiratani, Y., Shiga, Y., Inage, K., Eguchi, Y., Ohtori, S., & Orita, S. (2023). Magnetic resonance image segmentation of the compressed spinal cord in patients with degenerative cervical myelopathy using convolutional neural networks. International Journal of Computer Assisted Radiology and Surgery, 18(1), 45–54. 10.1007/s11548-022-02783-0 PubMed DOI
Papinutto, N., Asteggiano, C., Bischof, A., Gundel, T. J., Caverzasi, E., Stern, W. A., Bastianello, S., Hauser, S. L., & Henry, R. G. (2020). Intersubject variability and normalization strategies for spinal cord total cross-sectional and gray matter areas. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 30(1), 110–118. 10.1111/jon.12666 PubMed DOI PMC
Prapas, I., Derakhshan, B., Mahdiraji, A. R., & Markl, V. (2021). Continuous training and deployment of deep learning models. Datenbank-Spektrum: Zeitschrift Fur Datenbanktechnologie: Organ Der Fachgruppe Datenbanken Der Gesellschaft Fur Informatik e.V, 21(3), 203–212. 10.1007/s13222-021-00386-8 PubMed DOI PMC
Rahman, A., Ali, H., Badshah, N., Zakarya, M., Hussain, H., Rahman, I. U., Ahmed, A., & Haleem, M. (2022). Power mean based image segmentation in the presence of noise. Scientific Reports, 12(1), 21177. 10.1038/s41598-022-25250-x PubMed DOI PMC
Rotem-Kohavi, N., Humphreys, S., Noonan, V. K., Cheng, C. L., Guay-Paquet, M., Bouthillier, M., Valošek, J., Naga Karthik, E., Lichtenstein, E., Guenther, N., Ost, K., Attabib, N., Hardisty, M., Badhiwala, J., Larouche, J., Pahuta, M., Christie, S., Fehlings, M. G., Fourney, D. … Cadotte, D. W. (2025). Building a library of acute traumatic spinal cord injury images across Canada: A retrospective cohort study protocol. BMJ Open, 15(12), e106818. 10.1136/bmjopen-2025-106818 PubMed DOI PMC
Shi, J., & Wu, J. (2021). Distilling effective supervision for robust medical image segmentation with noisy labels. arXiv [cs.CV]. http://arxiv.org/abs/2106.11099
Shumailov, I., Shumaylov, Z., Zhao, Y., Papernot, N., Anderson, R., & Gal, Y. (2024). AI models collapse when trained on recursively generated data. Nature, 631(8022), 755–759. 10.1038/s41586-024-07566-y PubMed DOI PMC
None
Sodhani, S., Faramarzi, M., Mehta, S. V., Malviya, P., Abdelsalam, M., Janarthanan, J., & Chandar, S. (2022). An Introduction to lifelong supervised learning. arXiv [cs.LG]. http://arxiv.org/abs/2207.04354
Spjuth, O., Frid, J., & Hellander, A. (2021). The machine learning life cycle and the cloud: Implications for drug discovery. Expert Opinion on Drug Discovery, 16(9), 1071–1079. 10.1080/17460441.2021.1932812 PubMed DOI
Tabassam, A. I. U. (2023). MLOps: A step forward to enterprise machine learning. arXiv [cs.SE]. http://arxiv.org/abs/2305.19298
Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Medical Imaging, 15(1), 29. 10.1186/s12880-015-0068-x PubMed DOI PMC
Taso, M., Girard, O. M., Duhamel, G., Le Troter, A., Feiweier, T., Guye, M., Ranjeva, J. P., & Callot, V. (2016). Tract-specific and age-related variations of the spinal cord microstructure: A multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR in Biomedicine, 29(6), 817–832. 10.1002/nbm.3530 PubMed DOI
Terpilowski, M. (2019). scikit-posthocs: Pairwise multiple comparison tests in Python. Journal of Open Source Software, 4(36), 1169. 10.21105/joss.01169 DOI
Treveil, M., Omont, N., Stenac, C., Lefevre, K., Phan, D., Zentici, J., Lavoillotte, A., Miyazaki, M., & Heidmann, L. (2020). Introducing MLOps. O’Reilly Media. 10.1007/978-1-4842-9642-4_1 DOI
Tsagkas, C., Horvath-Huck, A., Haas, T., Amann, M., Todea, A., Altermatt, A., Müller, J., Cagol, A., Leimbacher, M., Barakovic, M., Weigel, M., Pezold, S., Sprenger, T., Kappos, L., Bieri, O., Granziera, C., Cattin, P., & Parmar, K. (2023). Fully automatic method for reliable spinal cord compartment segmentation in multiple sclerosis. AJNR. American Journal of Neuroradiology, 44(2), 218–227. 10.3174/ajnr.A7756 PubMed DOI PMC
Valošek, J., Bédard, S., Keřkovský, M., Rohan, T., & Cohen-Adad, J. (2024). A database of the healthy human spinal cord morphometry in the PAM50 template space. Imaging Neuroscience, 2(34), 1–15. 10.1162/imag_a_00075 PubMed DOI PMC
Valošek, J., & Cohen-Adad, J. (2024). Reproducible spinal cord quantitative MRI analysis with the Spinal Cord Toolbox. Magnetic Resonance in Medical Sciences: MRMS: An Official Journal of Japan Society of Magnetic Resonance in Medicine, 23(3), 307–315. 10.2463/mrms.rev.2023-0159 PubMed DOI PMC
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer Research, 77(21), e104–e107. 10.1158/0008-5472.CAN-17-0339 PubMed DOI PMC
Veiga-Canuto, D., Cerdà-Alberich, L., Sangüesa Nebot, C., Martínez de Las Heras, B., Pötschger, U., Gabelloni, M., Sierra Carot, J. M., Taschner-Mandl, S., Düster, V., Cañete, A., Ladenstein, R., Neri, E., & Martí-Bonmatí, L. (2022). Comparative multicentric evaluation of inter-observer variability in manual and automatic segmentation of neuroblastic tumors in magnetic resonance images. Cancers, 14(15), 3648. 10.3390/cancers14153648 PubMed DOI PMC
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt van der, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,…SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. 10.1038/s41592-019-0686-2 PubMed DOI PMC
Yao, J., Zhang, Y., Zheng, S., Goswami, M., Prasanna, P., & Chen, C. (2023). Learning to segment from noisy annotations: A spatial correction approach. arXiv [eess.IV]. http://arxiv.org/abs/2308.02498