Distal Nasal Part of the Visual Field and RNFL in Primary Open-Angle Glaucoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38192580
PubMed Central
PMC10771774
DOI
10.2147/opth.s444057
PII: 444057
Knihovny.cz E-zdroje
- Klíčová slova
- RNFL, distal nasal visual field, early diagnosis of POAG,
- Publikační typ
- časopisecké články MeSH
PURPOSE: The aim of this study was to compare changes in the conventionally undiagnosed distal nasal visual field with RNFL in patients with early primary open-angle glaucoma (POAG). MATERIAL AND METHODS: 59 eyes of 32 patients (18 women, 14 men) with early stage POAG were included. All eyes were found to have a normal visual field (fast threshold program of 50 degrees nasally and 22 degrees temporally) with the Medmont M700. Visual acuity was 1.0 (with a possible correction ±3 D), and they had no other ocular pathology except glaucoma. The visual field was subsequently examined with the same instrument by moving the fixation point 40 degrees temporally (spatially adaptive program) and simultaneously turning the head 10 degrees nasally. A total of 89 examination points were included using flicker stimuli in a range of 0-120 degrees nasally. Nerve fiber layer (RNFL) and vessel density (VD) was measured using the in-built software of the Avanti RTVue XR instrument. Using Pearson's correlation coefficient, the results of visual field examination with RNFL without and after correction (by subtracting VD from total RNFL value) in the superior-nasal (SN-5) and inferior-nasal (IN-8) segments were compared. RESULTS: In all eyes, changes were found in the distal periphery of the nasal part of the visual field. No correlation was noted by comparison with RNFL. After adjusting RNFL for VD, we observed no correlation in the SN segment (5) (r=-0.03) and a very weak correlation in the IN segment (8) (r=-0.16). CONCLUSION: With a normal visual field tested by the rapid threshold glaucoma program, changes in the distal part of the nasal periphery of the visual field were found in the entire cohort and did not correlate with the RNFL and RNFL results after correction from VD.
Zobrazit více v PubMed
Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73. doi:10.1016/j.preteyeres.2004.06.001 PubMed DOI
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–1911. doi:10.1001/jama.2014.3192 PubMed DOI PMC
Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1991;32:484–491. PubMed
Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303–310. doi:10.1136/bjo.84.3.303 PubMed DOI PMC
Naskar R, Wissing M, Thanos S. Detection of Early Neuron Degeneration and Accompanying Microglial Responses in the Retina of a Rat Model of Glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2962–2968. PubMed
Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3005–3010. doi:10.1167/iovs.02-0620 PubMed DOI
Mukai R, Park DH, Okunuki Y, et al. Mouse model of ocular hypertension with retinal ganglion cell degeneration. PLoS One. 2019;14(1):e0208713. doi:10.1371/journal.pone.0208713 PubMed DOI PMC
Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 1988;95(3):357–363. doi:10.1016/S0161-6420(88)33176-3 PubMed DOI
Soto I, Oglesby E, Buckingham BP, et al. Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci. 2008;28(2):548–561. doi:10.1523/JNEUROSCI.3714-07.2008 PubMed DOI PMC
Dawson WW, Hawthorne MN, Parmer R, Hope GM, Hueter R. Very large neurons of the inner retina of humans and other mammals. Retina. 1989;9(1):69–74. doi:10.1097/00006982-198909010-00009 PubMed DOI
Dacey DM. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp. 1994;184:12–28. doi:10.1002/9780470514610.ch2 PubMed DOI
Skalicky SE. Ocular and Visual Physiology Clinical Application. Springer; 2015.
Lestak J, Fus M. Visual Field Assessment in Hypertension Glaucoma. Cesk Slov Oftalmol. 2021;77(1):22–26. doi:10.31348/2021/2 PubMed DOI
Lestak J, Fus M, Lestak T, Pitrova S. The far nasal part of the visual field – part II – contribution to the early diagnosis of glaucoma. Cesk Slov Oftalmol. 2023;79:312–316. doi:10.31348/2023/37 PubMed DOI
Lešták J, Fůs M, Král J. The Relationship Between the Thickness of cpRNFL in Segments and Intraocular Pressure. Clin Ophthalmol. 2022;16:3673–3679. doi:10.2147/OPTH.S388936 PubMed DOI PMC
Lešták J, Fůs M, Král J. retinal ganglion cells on the optic nerve disc following vessel density correction at different IOP values. Exp Ther Med. 2023;25(6):261. doi:10.3892/etm.2023.11960 PubMed DOI PMC
Lešták J, Fůs M, Pitrová Š. Peripapillary retinal nerve fiber layer following vessel density correction at different IOP values. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2024;168:56. PubMed
Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39(12):2304–2320. PubMed
Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300(1):5–25. doi:10.1002/cne.903000103 PubMed DOI
Perry VH, Oehler R, Cowey A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neurosci. 1984;12(4):1101–1123. doi:10.1016/0306-4522(84)90006-X PubMed DOI
Rodieck RW, Binmoeller KF, Dineen J. Parasol and midget ganglion cells of the human retina. J Comp Neurol. 1985;233(1):115–132. doi:10.1002/cne.902330107 PubMed DOI
Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99(1):137–143. doi:10.1001/archopht.1981.03930010139020 PubMed DOI
Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma: 111. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–146. doi:10.1001/archopht.1982.01030030137016 PubMed DOI
Tu S, Li K, Ding X, Hu D, Li K, Ge J. Relationship between intraocular pressure and retinal nerve fibre thickness loss in a monkey model of chronic ocular hypertension. Eye (Lond). 2019;33(12):1833–1841. doi:10.1038/s41433-019-0484-1 PubMed DOI PMC