• This record comes from PubMed

The Relationship Between the Thickness of cpRNFL in Segments and Intraocular Pressure

. 2022 ; 16 () : 3673-3679. [epub] 20221109

Status PubMed-not-MEDLINE Language English Country New Zealand Media electronic-ecollection

Document type Journal Article

PURPOSE: The aim of this study was to investigate whether the retinal nerve fibre layer (RNFL) in some segments of the optic nerve disc in pathological intraocular pressure is more damaged in eyes without antiglaucoma treatment. PATIENTS AND METHODS: The cohort consisted of 69 subjects (122 eyes), 32 males (6x one, 26x both eyes) aged 21 to 76 years and 37 females (4x one and 30x both eyes) aged 22 to 75 years, who were measured to have IOP greater than 21 mmHg (21-36) in routine ambulatory care. Measurements were performed using the Ocular Response Analyser, taking into account corneal hysteresis. RNFL thickness was measured using the Avanti RTVue XR and was assessed in 8 segments (1-IT, 2-TI, 3-TS, 4-ST, 5-SN, 6-NS, 7-NI, 8-IN). The visual field was examined with a fast threshold glaucoma program using the Medmont M700. The overall defect (OD) was evaluated. Pearson's correlation coefficient r was used to assess the dependence between the selected parameters. RESULTS: The largest peripapillary changes in RNFL were observed in segments 1, 4, 5 and 8. It should be emphasized that segments 1 and 4 have been temporarily shifted. Segments 5 and 8 then corresponded to the upper (at no. 12) and lower (at no. 6) sectors. CONCLUSION: The most important result of this study is the finding that the greatest changes in the RNFL layer were observed in pathological IOP at segment 5 (r=-0.3) and 8 (r=-0.28), at the point where the fibres of the magnocellular retinal ganglion cells enter the retina.

See more in PubMed

Bengtsson B, Heijl A. Diurnal IOP fluctuation: not an independent risk factor for glaucomatous visual field loss in high-risk ocular hypertension. Graefe’s Arch Clin Exp Ophthalmol. 2005;243:513–518. doi:10.1007/s00417-004-1103-8 PubMed DOI

Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW, Cordeiro MF. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci. 2005;46:175–182. doi:10.1167/iovs.04-0832 PubMed DOI PMC

Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303–310. doi:10.1136/bjo.84.3.303 PubMed DOI PMC

Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma. 2002;11:365–370. doi:10.1097/00061198-200208000-00015 PubMed DOI

Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3005–3010. doi:10.1167/iovs.02-0620 PubMed DOI

Weber AJ, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina. Invest Ophthalmol Vis Sci. 1998;39:2304–2320. PubMed

Naskar R, Wissing M, Thanos S. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2962–2968. PubMed

Vrabec F. Glaucomatous cupping of the human optic disk: a neuro-histologic study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1976;198:223–234. doi:10.1007/BF00410715 PubMed DOI

Soto I, Oglesby E, Buckingham BP, et al. Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci. 2008;28:548–561. doi:10.1523/JNEUROSCI.3714-07.2008 PubMed DOI PMC

Quigley HA, Dunkelberger GR, Green WR. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 1988;95:357–363. doi:10.1016/s0161-6420(88)33176-3 PubMed DOI

Lešták J, Fůs M. Visual field assessment in hypertension glaucoma. Cesk Slov Oftalmol. 2021;77:20–24. PubMed

Kral J, Lestak J, Nutterová E. OCT angiography, RNFL and visual field at different values of intraocular pressure. Biomed Rep. 2022;16(5):36. doi:10.3892/br.2022.1519 PubMed DOI PMC

Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma, III: quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–146. PubMed

Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–464. doi:10.1016/0002-9394(89)90488-1 PubMed DOI

Sommer A, Katz J, Quigley HA, et al. Clinical detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83. doi:10.1001/archopht.1991.01080010079037 PubMed DOI

Quigley HA, Enger C, Katz J, et al. Risk factors for the development of glaucomatous visual field loss in ocular hypertension. Arch Ophthalmol. 1994;112:644–649. doi:10.1001/archopht.1994.01090170088028 PubMed DOI

Fortune B, Burgoyne CF, Cull GA, Reynaud J, Wang L. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest Ophthalmol Vis Sci. 2012;53:3939–3950. doi:10.1167/iovs.12-9979 PubMed DOI PMC

Rodieck RW, Binmoeller KF, Dineen J. Parasol and midget ganglion cells of the human retina. J Comp Neurol. 1985;233:115–132. doi:10.1002/cne.902330107 PubMed DOI

Dacey DM. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp. 1994;184:12–28. doi:10.1002/9780470514610.ch2 PubMed DOI

Dawson WW, Hawthorne MN, Parmer R, Hope GM, Hueter R. Very large neurons of the inner retina of humans and other mammals. Retina. 1989;9:69–74. doi:10.1097/00006982-198909010-00009 PubMed DOI

Perry VH, Oehler R, Cowey A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience. 1984;12:1101–1123. doi:10.1016/0306-4522(84)90006-x PubMed DOI

Gurcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25. doi:10.1002/cne.903000103 PubMed DOI

Hertel E. Lehrbuch und Atlas der Augenheilkunde begrundet von Th. Axenfeld [Textbook and Atlas of Ophthalmology, founded by Th. Axenfeld]. Jena, Verlag von Gustav Fischer; 1935:549.

Hunter SF, Leavitt JA, Rodriguez M. Direct observation of myelination in vivo in the mature human central nervous systém A model for the behaviour of oligodendrocyte progenitors and their progeny. Brain. 1997;120:2071–2082. doi:10.1093/brain/120.11.2071 PubMed DOI

Drenhaus U, Gunten A, Rager G. Classes of axons and their distribution in the optic nerve of the tree shrew (Tupaia belangeri). Anat Rec. 1997;249:103–116. doi:10.1002/(SICI)1097-0185(199709)249:1<103::AID-AR13>3.0.CO;2-T PubMed DOI

FitzGibbon T, Taylor SF. Mean retinal ganglion cell axon diameter varies with location in the human retina. Jpn J Ophthalmol. 2012;56:631–637. doi:10.1007/s10384-012-0185-9 PubMed DOI

Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99:137–143. doi:10.1001/archopht.1981.03930010139020 PubMed DOI

Drance SM. The glaucomatous visual field. Br J Ophthalmol. 1972;56:186–200. doi:10.1136/bjo.56.3.186 PubMed DOI PMC

Werner EB, Drance SM. Early visual field disturbances in glaucoma. Arch Oph-Thalmol. 1977;95:1173–1175. doi:10.1001/archopht.1977.04450070071002 PubMed DOI

Hart WM, Becker B. The onset and evolution of glaucomatous visual field defects. Ophthalmology. 1982;89:268–279. doi:10.1016/S0161-6420(82)34798-3 PubMed DOI

Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma, II: the site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–649. doi:10.1001/archopht.1981.03930010635009 PubMed DOI

Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphological changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–691. doi:10.1016/0002-9394(83)90389-6 PubMed DOI

Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113:586–596. doi:10.1001/archopht.1995.01100050054031 PubMed DOI

Jonas JB, Fernandez MC, Sturmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology. 1993;100:63–68. doi:10.1016/S0161-6420(13)31694-7 PubMed DOI

Noguchi T, Shimazawa M, Hamaguchi K, Araki T, Horai N, Hara H. Relationship between elevated intraocular pressure and divided peripapillary sector retinal nerve fiber layer thickness in a cynomolgus monkey laser-induced ocular hypertension model. OphthalmicRes. 2017;58:99–106. doi:10.1159/000471884 PubMed DOI

Tu S, Li K, Ding X, Hu D, Li K, Ge J. Relationship between intraocular pressure and retinal nerve fibre thickness loss in a monkey model of chronic ocular hypertension. Eye. 2019;33:1833–1841. doi:10.1038/s41433-019-0484-1 PubMed DOI PMC

Bowd C, Weinreb RN, Williams JM, Zangwill LM. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol. 2000;118:22–26. doi:10.1001/archopht.118.1.22 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...