OCT angiography, RNFL and the visual field at different values of intraocular pressure

. 2022 May ; 16 (5) : 36. [epub] 20220302

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35386107

The aim of the present study was to investigate the relationship between intraocular pressure (IOP), vessel density (VD), retinal nerve fiber layer (RNFL) parameters and overall defect (OD) of the visual field in eyes where antiglaucoma treatment had not yet been initiated. A total of 61 subjects (122 eyes) who had an IOP of >20 mmHg on several occasions, in at least one eye, in routine outpatient care were included. These were subjects who had never been treated for hypertension glaucoma. The cohort was divided into four subgroups. In the first group, there were 18 eyes with an IOP value of <20 mmHg. In the second group, there were 39 eyes with IOP values of 20-22 mmHg. The third group consisted of 32 eyes with IOP values of 22-24 mmHg and the final group consisted of 33 eyes with IOP values of >24 mmHg. The IOP results were compared with VD, RNFL and OD using Pearson's correlation coefficient to assess the relationship between the selected parameters. RNFL and OD were moderately correlated only in the group of eyes with an IOP value >24 (r=0.48); in the other groups the correlation was very weak. However, changes in visual field were already observed in eyes with IOP 20-22 mmHg (r=-0.27). There was a moderate correlation in eyes with an IOP value >24 mmHg (r=-0.53). The most significant result observed was the relationship between VD and RNFL. In eyes with an IOP value ≤20, a moderate to strong correlation between these parameters was observed. This relationship increased with increasing IOP values up to a very strong correlation in the group with an IOP value >24 mmHg. A moderate to strong dependence between VD and RNFL in eyes with an IOP value ≤20 mmHg was observed, and this dependence was very strongly correlated in the eyes with an IOP value >24 mmHg.

Zobrazit více v PubMed

Lešták J, Fůs M. Neuroprotection in glaucoma-electrophysiology. Exp Ther Med. 2020;19:2401–2405. doi: 10.3892/etm.2020.8509. PubMed DOI PMC

Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322–1332. doi: 10.1016/j.ophtha.2014.01.021. PubMed DOI PMC

Morgan JE, Uchida H, Caprioli J. Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol. 2000;84:303–310. doi: 10.1136/bjo.84.3.303. PubMed DOI PMC

Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma. 2002;11:365–370. doi: 10.1097/00061198-200208000-00015. PubMed DOI

Naskar R, Wissing M, Thanos S. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2962–2968. PubMed

Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci. 2003;44:3005–3010. doi: 10.1167/iovs.02-0620. PubMed DOI

Soto I, Oglesby E, Buckingham BP, Son JL, Roberson ED, Steele MR, Inman DM, Vetter ML, Horner PJ, Marsh-Armstrong N. Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci. 2008;28:548–561. doi: 10.1523/JNEUROSCI.3714-07.2008. PubMed DOI PMC

Yu PK, Cringle SJ, Yu DY. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res. 2014;129:83–92. doi: 10.1016/j.exer.2014.10.020. PubMed DOI

Lee EJ, Lee KM, Lee SH, Kim TW. OCT Angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57:6265–6270. doi: 10.1167/iovs.16-20287. PubMed DOI

Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, Bettin P, Magazzeni S, Querques G, Vazquez LE, et al. Optical Coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58:5713–5722. doi: 10.1167/iovs.17-22865. PubMed DOI

Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123:2498–2508. doi: 10.1016/j.ophtha.2016.08.041. PubMed DOI PMC

Holló G. Progressive decrease of peripapillary angioflow vessel density during structural and visual field progression in early primary open-angle glaucoma. J Glaucoma. 2017;26:661–664. doi: 10.1097/IJG.0000000000000695. PubMed DOI

Ma ZW, Qiu WH, Zhou DN, Yang WH, Pan XF, Chen H. Changes in vessel density of the patients with narrow antenior chamber after an acute intraocular pressure elevation observed by OCT angiography. BMC Ophthalmol. 2019;19(132) doi: 10.1186/s12886-019-1146-6. PubMed DOI PMC

Khayrallah O, Mahjoub A, Ben Abdesslam N, Mahjoub A, Ghorbel M, Mahjoub H, Knani L, Krifa F. Optical coherence tomography angiography vessel density parameters in primary open-angle glaucoma. Ann Med Surg (Lond) 2021;69(102671) doi: 10.1016/j.amsu.2021.102671. PubMed DOI PMC

Chung JK, Hwang YH, Wi JM, Kim M, Jung JJ. Glaucoma diagnostic ability of the Opticalcoherence tomography angiography vessel density parameters. Curr Eye Res. 2017;42:1458–1467. doi: 10.1080/02713683.2017.1337157. PubMed DOI

Rao HL, Dasari S, Riyazuddin M, Puttaiah NK, Pradhan ZS, Weinreb RN, Mansouri K, Webers CAB. Diagnostic ability and structure-function relationship of peripapillary optical microangiography measurements in glaucoma. J Glaucoma. 2018;27:219–226. doi: 10.1097/IJG.0000000000000873. PubMed DOI

Richter GM, Sylvester B, Chu Z, Burkemper B, Madi I, Chang R, Reznik A, Varma R, Wang RK. Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: Focal structural and functional correlations and diagnostic performance. Clin Ophthalmol. 2018;12:2285–2296. doi: 10.2147/OPTH.S179816. PubMed DOI PMC

Rao HL, Dasari S, Puttaiah NK, Pradhan ZS, Moghimi S, Mansouri K, Webers CAB, Weinreb RN. Optical microangiography and progressive retinal nerve fiber layer loss in primary open angle glaucoma. Am J Ophthalmol. 2021;233:171–179. doi: 10.1016/j.ajo.2021.07.023. PubMed DOI PMC

Mansoori T, Sivaswamy J, Gamalapati JS, Balakrishna N. Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness. Int Ophthalmol. 2018;38:967–974. doi: 10.1007/s10792-017-0544-0. PubMed DOI

Feher J, Pescosolido N, Tranquilli Leali FM, Cavalloti C. Microvessels of the human optic nerve head: Ultrastructural and radioreceptorial changes in eyes with increased IOP. Can J Ophthalmol. 2005;40:492–498. doi: 10.1016/s0008-4182(05)80012-2. PubMed DOI

Vorwerk CK, Gorla MS, Dreyer EB. An experimental basis for implicating excitotoxicity in glaucomatous optic neuropathy. Surv Ophthalmol. 1999;43 (Suppl 1):S142–S150. doi: 10.1016/s0039-6257(99)00017-x. PubMed DOI

Tsuda Y, Nakahara T, Ueda K, Mori A, Sakamoto K, Ishii K. Effect of nafamostat on N-methyl-D-aspartate-induced retinal neuronal and capillary degeneration in rats. Biol Pharm Bull. 2012;35:2209–2213. doi: 10.1248/bpb.b12-00644. PubMed DOI

Díaz F, Villena A, Vidal L, Moreno M, García-Campos J, Pérez de Vargas I. Experimental model of ocular hypertension in the rat: Study of the optic nerve capillaries and action of hypotensive drugs. Invest Ophthalmol Vis Sci. 2010;51:946–9951. doi: 10.1167/iovs.09-3667. PubMed DOI

Quigley HA, Sanchez RM, Dunkelberger GR, L'Hernault NL, Baginski TA. Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci. 1987;28:913–920. PubMed

Heijl A, Patella VM. The field analyser primer. Essential perimetry. Third edition. Carl Zeiss Meditec Inc. pp26, 2002. ISBN: 0-9721560-0-3.

Heijl A, Patella VM, Bengtsson B. The field analyser primer. Essential perimetry. Fourth edition. Carl Zeiss Meditec Inc. pp29, 2012. ISBN: 0-9884795-0-8.

Lestak J, Fus M. Visual field assessment in hypertension glaucoma. Cesk Slov Oftalmol. 2021;77:22–26. doi: 10.31348/2021/2. PubMed DOI

https://medmont.com.au/m700-automated-perimeter/ Accessed date: 25.02.2022.

Lestak J, Jiraskova N, Zakova M, Stredova M. Normotensive glaucoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub: Sep 11, 2018. (Epub ahead of print). doi: 10.5507/bp.2018.039. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace