On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 20-01233S
Czech Science Foundation
PubMed
37686156
PubMed Central
PMC10487960
DOI
10.3390/ijms241713349
PII: ijms241713349
Knihovny.cz E-zdroje
- Klíčová slova
- CCSD(T), DFT, intermolecular stacking, oligothiophenes, supramolecular junctions,
- MeSH
- elektronika * MeSH
- polymery * MeSH
- thiofeny MeSH
- virion MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery * MeSH
- thiofeny MeSH
There have been attempts, both experimental and based on density-functional theory (DFT) modeling, at understanding the factors that govern the electronic conductance behavior of single-stacking junctions formed by pi-conjugated materials in nanogaps. Here, a reliable description of relevant stacked configurations of some thiophene-cored systems is provided by means of high-level quantum chemical approaches. The minimal structures of these configurations, which are found using the dispersion-corrected DFT approach, are employed in calculations that apply the coupled cluster method with singles, doubles and perturbative triples [CCSD(T)] and extrapolations to the complete basis set (CBS) limit in order to reliably quantify the strength of intermolecular binding, while their physical origin is investigated using the DFT-based symmetry-adapted perturbation theory (SAPT) of intermolecular interactions. In particular, for symmetrized S-Tn dimers (where "S" and "T" denote a thiomethyl-containing anchor group and a thiophene segment comprising "n" units, respectively), the CCSD(T)/CBS interaction energies are found to increase linearly with n ≤ 6, and significant conformational differences between the flanking 2-thiophene group in S-T1 and S-T2 are described by the CCSD(T)/CBS and SAPT/CBS computations. These results are put into the context of previous work on charge transport properties of S-Tn and other types of supramolecular junctions.
Zobrazit více v PubMed
Li T., Bandari V.K., Schmid O.G. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. Adv. Mater. 2023;35:2209088. doi: 10.1002/adma.202209088. PubMed DOI
Li X., Ge W., Guo S., Bai J., Hong W. Characterization and Application of Supramolecular Junctions. Angew. Chem. 2023;62:202216819. doi: 10.1002/anie.202216819. PubMed DOI
Ayinla R.T., Shiri M., Song B., Gangishetty M., Wang K. The pivotal role of non-covalent interactions in single-molecule charge transport. Mater. Chem. Front. 2023;7:3524–3542. doi: 10.1039/D3QM00210A. DOI
Zhang C., Cheng J., Wu Q., Hou S., Feng S., Jiang B., Lambert C.J., Gao X., Li Y., Li J. Enhanced π–π Stacking between Dipole-Bearing Single Molecules Revealed by Conductance Measurement. J. Am. Chem. Soc. 2023;145:1617–1630. doi: 10.1021/jacs.2c09656. PubMed DOI
Homma K., Kaneko S., Tsukagoshi K., Nishino T. Intermolecular and Electrode-Molecule Bonding in a Single Dimer Junction of Naphthalenethiol as Revealed by Surface-Enhanced Raman Scattering Combined with Transport Measurements. J. Am. Chem. Soc. 2023;145:15788–15795. doi: 10.1021/jacs.3c02050. PubMed DOI PMC
Li R., Zhou Y., Ge W., Zheng J., Zhu Y., Bai J., Li X., Lin L., Duan H., Shi J., et al. Strain of Supramolecular Interactions in Single-Stacking Junctions. Angew. Chem. 2022;61:e202200191. doi: 10.1002/anie.202200191. PubMed DOI
Hihath J., Arroyo C.R., Rubio-Bollinger G., Tao N., Agraït N. Study of Electron—Phonon Interactions in a Single Molecule Covalently Connected to Two Electrodes. Nano Lett. 2008;8:1673–1678. doi: 10.1021/nl080580e. PubMed DOI
Li X., Wu Q., Bai J., Hou S., Jiang W., Tang C., Song H., Huang X., Zheng J., Yang Y., et al. Structure-Independent Conductance of Thiophene-Based Single-Stacking Junctions. Angew. Chem. 2020;8:3280–3286. doi: 10.1002/anie.201913344. PubMed DOI
Xiang L., Hines T., Palma J.L., Lu X., Mujica V., Ratner M.A., Zhou G., Tao N. Non-exponential Length Dependence of Conductance in Iodide-Terminated Oligothiophene Single-Molecule Tunneling Junctions. J. Am. Chem. Soc. 2016;138:679–687. doi: 10.1021/jacs.5b11605. PubMed DOI
Chen H., Stoddart J.F. From molecular to supramolecular electronics. Nat. Rev. Mater. 2021;6:804–828. doi: 10.1038/s41578-021-00302-2. DOI
Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020;10:e1452. doi: 10.1002/wcms.1452. DOI
Xie X., Li P., Xu Y., Zhou L., Yan Y., Xie L., Jia C., Guo X. Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes. ACS Nano. 2022;16:3476–3505. doi: 10.1021/acsnano.1c11433. PubMed DOI
Tang Y., Zhou Y., Zhou D., Chen Y., Xiao Z., Shi J., Liu J., Hong W. Electric Field-Induced Assembly in Single-Stacking Terphenyl Junctions. J. Am. Chem. Soc. 2020;142:19101–19109. doi: 10.1021/jacs.0c07348. PubMed DOI
Bootsma A.N., Doney A.C., Wheeler S.E. Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains. J. Am. Chem. Soc. 2019;141:11027–11035. doi: 10.1021/jacs.9b00936. PubMed DOI
Czernek J., Brus J., Czerneková V. A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. Int. J. Mol. Sci. 2022;23:15773. doi: 10.3390/ijms232415773. PubMed DOI PMC
Sedlak R., Janowski T., Pitoňák M., Řezáč J., Pulay P., Hobza P. Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes. J. Chem. Theory Comput. 2013;9:3364–3374. doi: 10.1021/ct400036b. PubMed DOI PMC
Czernek J., Brus J., Czerneková V., Kobera L. Quantifying the Intrinsic Strength of C–H⋯O Intermolecular Interactions. Molecules. 2023;28:4478. doi: 10.3390/molecules28114478. PubMed DOI PMC
Řezáč J., Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016;116:5038–5071. doi: 10.1021/acs.chemrev.5b00526. PubMed DOI
Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC
Li Z., Mejía L., Marrs J., Jeong H., Hihath J., Franco I. Understanding. the Conductance Dispersion of Single-Molecule Junctions. J. Phys. Chem. C. 2021;125:3406–3414. doi: 10.1021/acs.jpcc.0c08428. DOI
Mejía L., Kleinekathöfer U., Franco I. Coherent and incoherent contributions to molecular electron transport. J. Chem. Phys. 2022;156:094302. doi: 10.1063/5.0079708. PubMed DOI
von Lilienfeld O.A., Tkatchenko A. Two- and three-body interatomic dispersion energy contributions to binding in mole-cules and solids. J. Chem. Phys. 2010;132:234109. doi: 10.1063/1.3432765. PubMed DOI
Al-Hamdani Y.S., Nagy P.R., Zen A., Barton D., Kállay M., Bradenburg J.G., Tchatkenko A. Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 2021;12:3927. doi: 10.1038/s41467-021-24119-3. PubMed DOI PMC
Mejía L., Renaud N., Franco I. Signatures of Conformational Dynamics and Electrode-Molecule Interactions in the Conductance Profile During Pulling of Single-Molecule Junctions. J. Phys. Chem. Lett. 2018;9:745–750. doi: 10.1021/acs.jpclett.7b03323. PubMed DOI
Wu C., Bates D., Sangtarash S., Ferri N., Thomas A., Higgins S.J., Robertson C.M., Nichols R.J., Sadeghi H., Vezzoli A. Folding a Single-Molecule Junction. Nano Lett. 2020;20:7980–7986. doi: 10.1021/acs.nanolett.0c02815. PubMed DOI PMC
Zhu Y., Zhou Y., Ren L., Ye J., Wang H., Liu X., Huang R., Liu H., Liu J., Shi J., et al. Switching Quantum Interference in Single-Molecule Junctions by Mechanical Tuning. Angew. Chem. 2023;62:e202302693. doi: 10.1002/anie.202302693. PubMed DOI
Magyarkuti A., Adak O., Halbritter A., Venkataraman L. Electronic and mechanical characteristics of stacked dimer molecular junctions. Nanoscale. 2018;10:3562–3568. doi: 10.1039/C7NR08354H. PubMed DOI
Irikura K.K., National Institute of Standards and Technology Using the Output File from a Gaussian Frequency Calculation to Compute Ideal-Gas Thermodynamic Functions. [(accessed on 12 August 2023)]; Available online: https://www.nist.gov/mml/csd/chemical-informatics-research-group/products-and-services/program-computing-ideal-gas/
Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16. Gaussian, Inc.; Wallingford, CT, USA: 2019. Revision C.01.
Becke A. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. J. Chem. Phys. 1997;107:8554–8560. doi: 10.1063/1.475007. DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006;124:034108. doi: 10.1063/1.2148954. PubMed DOI
Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Rappoport D., Furche F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI
Brémond É., Savarese M., Su N.Q., Pérez-Jiménez Á.J., Xu X., Sancho-García J.C., Adamo C. Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules. J. Chem. Theory Comput. 2016;12:459–465. doi: 10.1021/acs.jctc.5b01144. PubMed DOI
Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007. doi: 10.1063/1.456153. DOI
Kendall R.A., Dunning T.H., Jr. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796. doi: 10.1063/1.462569. DOI
Weigend F., Häser M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997;97:331–340. doi: 10.1007/s002140050269. DOI
Weigend F., Häser M., Patzelt H., Ahlrichs R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998;294:143–152. doi: 10.1016/S0009-2614(98)00862-8. DOI
Balasubramani S.G., Chen G.P., Coriani S., Diedenhofen M., Frank M.S., Franzke Y.J., Furche F., Grotjahn R., Harding M.E., Hättig C., et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simula-tions. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC
Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI
Czernek J., Brus J., Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J. Chem. Phys. 2022;156:204303. doi: 10.1063/5.0093557. PubMed DOI
Heßelmann A., Jansen G. First-order intermolecular interaction energies from Kohn—Sham orbitals. Chem. Phys. Lett. 2002;357:464–470. doi: 10.1016/S0009-2614(02)00538-9. DOI
Heßelmann A., Jansen G. Intermolecular dispersion energies from time-dependent density functional theory. Chem. Phys. Lett. 2003;367:778–784. doi: 10.1016/S0009-2614(02)01796-7. DOI
Heßelmann A., Jansen G. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn—Sham density functional theory. Chem. Phys. Lett. 2002;362:319–325. doi: 10.1016/S0009-2614(02)01097-7. DOI
Moszynski R., Heijmen T.G.A., Jeziorski B. Symmetry-adapted perturbation theory for the calculation of Hartree—Fock interaction energies. Mol. Phys. 1996;88:741–758. doi: 10.1080/00268979650026262. DOI
Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI
Riplinger C., Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138:034106. doi: 10.1063/1.4773581. PubMed DOI
Riplinger C., Sandhoefer B., Hansen A., Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139:134101. doi: 10.1063/1.4821834. PubMed DOI
Riplinger C., Pinski P., Becker U., Valeev E.F., Neese F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI
Pinski P., Riplinger C., Valeev E.F., Neese F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 2015;143:034108. doi: 10.1063/1.4926879. PubMed DOI
Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. DOI
Revisiting the Most Stable Structures of the Benzene Dimer
Reliable Dimerization Energies for Modeling of Supramolecular Junctions