Reliable Dimerization Energies for Modeling of Supramolecular Junctions

. 2024 Jan 02 ; 25 (1) : . [epub] 20240102

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38203773

Grantová podpora
GA 23-05293S Czech Science Foundation

Accurate estimates of intermolecular interaction energy, ΔE, are crucial for modeling the properties of organic electronic materials and many other systems. For a diverse set of 50 dimers comprising up to 50 atoms (Set50-50, with 7 of its members being models of single-stacking junctions), benchmark ΔE data were compiled. They were obtained by the focal-point strategy, which involves computations using the canonical variant of the coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] performed while applying a large basis set, along with extrapolations of the respective energy components to the complete basis set (CBS) limit. The resulting ΔE data were used to gauge the performance for the Set50-50 of several density-functional theory (DFT)-based approaches, and of one of the localized variants of the CCSD(T) method. This evaluation revealed that (1) the proposed "silver standard" approach, which employs the localized CCSD(T) method and CBS extrapolations, can be expected to provide accuracy better than two kJ/mol for absolute values of ΔE, and (2) from among the DFT techniques, computationally by far the cheapest approach (termed "ωB97X-3c/vDZP" by its authors) performed remarkably well. These findings are directly applicable in cost-effective yet reliable searches of the potential energy surfaces of noncovalent complexes.

Zobrazit více v PubMed

Karshikoff A. Non-Covalent Interactions in Proteins. 2nd ed. World Scientific; Singapore: 2021. DOI

Jiao Y., Chen X.-Y., Stoddart J.F. Weak bonding strategies for achieving regio- and site-selective transformations. Chem. 2022;8:414–438. doi: 10.1016/j.chempr.2021.12.012. DOI

Haugland T.S., Schäfer C., Ronca E., Rubio A., Koch H. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021;154:094113. doi: 10.1063/5.0039256. PubMed DOI

Williams G.T., Haynes C.J.E., Fares M., Caltagirone C., Hiscock J.R., Gale P.A. Advances in applied supramolecular technologies. Chem. Rev. Soc. 2021;50:2737–2763. doi: 10.1039/D0CS00948B. PubMed DOI

Fiedler J., Bertland K., Borchert J.W., Corkery R.W., Eisfeld A., Gelbwaser-Klimovsky D., Greve M.M., Holst B., Jacobs K., Krüger M., et al. Perspectives on weak interactions in complex materials at different length scales. Phys. Chem. Chem. Phys. 2023;25:2671–2705. doi: 10.1039/D2CP03349F. PubMed DOI

Li T., Bandari V.K., Schmid O.G. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. Adv. Mater. 2023;35:2209088. doi: 10.1002/adma.202209088. PubMed DOI

Pan X., Montes E., Rojas W.Y., Lawson B., Vázquez H., Kamentska M. Cooperative Self-Assembly of Dimer Junctions Driven by π Stacking Leads to Conductance Enhancement. Nano Lett. 2023;23:6937–6943. doi: 10.1021/acs.nanolett.3c01540. PubMed DOI

Homma K., Kaneko S., Tsukagoshi K., Nishino T. Intermolecular and Electrode-Molecule Bonding in a Single Dimer Junction of Naphthalenethiol as Revealed by Surface-Enhanced Raman Scattering Combined with Transport Measurements. J. Am. Chem. Soc. 2023;145:15788–15795. doi: 10.1021/jacs.3c02050. PubMed DOI PMC

Li R., Zhou Y., Ge W., Zheng J., Zhu Y., Bai J., Li X., Lin L., Duan H., Shi J., et al. Strain of Supramolecular Interactions in Single-Stacking Junctions. Angew. Chem. 2022;61:e202200191. doi: 10.1002/anie.202200191. PubMed DOI

Zhang C., Cheng J., Wu Q., Hou S., Feng S., Jiang B., Lambert C.J., Gao X., Li Y., Li J. Enhanced π–π Stacking between Dipole-Bearing Single Molecules Revealed by Conductance Measurement. J. Am. Chem. Soc. 2023;145:1617–1630. doi: 10.1021/jacs.2c09656. PubMed DOI

Zhou P., Fu Y., Wang M., Qiu R., Wang Y., Stoddart J.F., Wang Y., Chen H. Robust Single-Supermolecule Switches Operating in Response to Two Different Noncovalent Interaction. J. Am. Chem. Soc. 2023;145:18800–18811. doi: 10.1021/jacs.3c03282. PubMed DOI

Li X., Zheng Y., Zhou Y., Zhu Z., Wu J., Ge W., Zhang Y., Ye Y., Chen L., Shi J., et al. Supramolecular Transistors with Quantum Interference Effect. J. Am. Chem. Soc. 2023;145:21679–21686. doi: 10.1021/jacs.3c08615. PubMed DOI

Li X., Ge W., Guo S., Bai J., Hong W. Characterization and Application of Supramolecular Junctions. Angew. Chem. 2023;62:202216819. doi: 10.1002/anie.202216819. PubMed DOI

Puzzarini C., Spada L., Alessandrini S., Barone V. The challenge of non-covalent interactions: Theory meets experiment for reconciling accuracy and interpretation. J. Phys. Condens. Matter. 2020;32:343002. doi: 10.1088/1361-648X/ab8253. PubMed DOI

Calvin J.A., Peng C., Rishi V., Kumar A., Valeev E.F. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021;121:1203–1231. doi: 10.1021/acs.chemrev.0c00006. PubMed DOI

Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets: Hydrogen Bonding. J. Chem. Theory Comput. 2020;16:2355–2368. doi: 10.1021/acs.jctc.9b01265. PubMed DOI

Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 2: Hydrogen Bonding in an Extended Chemical Space. J. Chem. Theory Comput. 2020;16:6305–6316. doi: 10.1021/acs.jctc.0c00715. PubMed DOI

Kříž K., Nováček M., Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021;17:1548–1561. doi: 10.1021/acs.jctc.0c01341. PubMed DOI

Kříž K., Řezáč J. Non-covalent interactions atlas benchmark data sets 4: σ-hole interactions. Phys. Chem. Chem. Phys. 2022;24:14794–14804. doi: 10.1039/D2CP01600A. PubMed DOI

Řezáč J. Non-Covalent Interactions Atlas benchmark data sets 5: London dispersion in an extended chemical space. Phys. Chem. Chem. Phys. 2022;24:14780–14793. doi: 10.1039/D2CP01602H. PubMed DOI

Sparrow Z.M., Ernst B.G., Joo P.T., Lao K.U., DiStasio R.A. NENCI-2021. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts. J. Chem. Phys. 2021;155:184303. doi: 10.1063/5.0068862. PubMed DOI

Spronk S.A., Glick Z.L., Metcalf D.P., Sherrill C.D., Cheney D.L. A quantum chemical interaction energy dataset for accurately modeling protein-ligand interactions. Sci. Data. 2023;10:619. doi: 10.1038/s41597-023-02443-1. PubMed DOI PMC

Santra G., Semidalas E., Mehta N., Karton A., Martin J.M.L. S66x8 noncovalent interactions revisited: New benchmark and performance of composite localized coupled-cluster methods. Phys. Chem. Chem. Phys. 2022;24:25555–25570. doi: 10.1039/D2CP03938A. PubMed DOI

Donchev A.G., Taube A.G., Decolvenaere E., Hargus C., McGibbon R.T., Law K.-H., Gregersen B.A., Li J.-L., Palmo K., Siva K., et al. Quantum chemical benchmark databases of gold-standard dimer interaction energies. Sci. Data. 2021;8:55. doi: 10.1038/s41597-021-00833-x. PubMed DOI PMC

Czernek J., Brus J. On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions. Int. J. Mol. Sci. 2023;24:13349. doi: 10.3390/ijms241713349. PubMed DOI PMC

Nagy P.R., Gyevi-Nagy L., Lőrincz B.D., Kállay M. Pursuing the bases set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: Case study on the S66 compilation. Mol. Phys. 2022;121:e2109526. doi: 10.1080/00268976.2022.2109526. DOI

Nagy P.R., Kállay M. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods. J. Chem. Theory Comput. 2019;15:5275–5298. doi: 10.1021/acs.jctc.9b00511. PubMed DOI

Al-Hamdani Y.S., Nagy P.R., Zen A., Barton D., Kállay M., Bradenburg J.G., Tchatkenko A. Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 2021;12:3927. doi: 10.1038/s41467-021-24119-3. PubMed DOI PMC

Riplinger C., Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138:034106. doi: 10.1063/1.4773581. PubMed DOI

Riplinger C., Pinski P., Becker U., Valeev E.F., Neese F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI

Riplinger C., Sandhoefer B., Hansen A., Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139:134101. doi: 10.1063/1.4821834. PubMed DOI

Guo Y., Riplinger C., Becker U., Liakos D.G., Minenkov Y., Cavallo L., Neese F. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)] J. Chem. Phys. 2018;148:011101. doi: 10.1063/1.5011798. PubMed DOI

Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI

Müller M., Hansen A., Grimme S. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. J. Chem. Phys. 2023;158:014103. doi: 10.1063/5.0133026. PubMed DOI

Nickerson C.J., Bryenton K.R., Price A.J.A., Johnson E.R. Comparison of Density-Functional Theory Dispersion Corrections for the DES15K Database. J. Chem. Phys. A. 2023;127:8712–8722. doi: 10.1021/acs.jpca.3c04332. PubMed DOI

Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020;10:e1452. doi: 10.1002/wcms.1452. DOI

Shahbaz M., Szalewicz K. Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions. Theor. Chem. Acc. 2019;138:25. doi: 10.1007/s00214-019-2414-5. DOI

Pinski P., Riplinger C., Becker U., Valeev E.F., Neese F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 2015;143:034108. doi: 10.1063/1.4926879. PubMed DOI

Sutradhar D., Sarmah A., Hobza P., Chandra A.K. Strong Be−N Interaction Induced Complementary Chemical Tuning to Design a Dual-gated Single Molecule Junction. Chem. Eur. J. 2023;29:e202301473. doi: 10.1002/chem.202301473. PubMed DOI

Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI

Kendall R.A., Dunning T.H., Jr. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI

Czernek J., Brus J., Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J. Chem. Phys. 2022;156:204303. doi: 10.1063/5.0093557. PubMed DOI

Czernek J., Brus J., Czerneková V. A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. Int. J. Mol. Sci. 2022;23:15773. doi: 10.3390/ijms232415773. PubMed DOI PMC

Kesharwani M.K., Karton M., Sylvetsky N., Martin J.M.L. The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Austr. J. Chem. 2018;71:238–248. doi: 10.1071/CH17588. DOI

Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC

Bootsma A.N., Doney A.C., Wheeler S.E. Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains. J. Am. Chem. Soc. 2019;141:11027–11035. doi: 10.1021/jacs.9b00936. PubMed DOI

Becke A. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. J. Chem. Phys. 1997;107:8554–8560. doi: 10.1063/1.475007. DOI

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Řezáč J., Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016;116:5038–5071. doi: 10.1021/acs.chemrev.5b00526. PubMed DOI

Huan T.D., Ramprasad R. Polymer Structure Prediction from First Principles. J. Phys. Chem. Lett. 2020;11:5823–5829. doi: 10.1021/acs.jpclett.0c01553. PubMed DOI

Li X., Wu Q., Bai J., Hou S., Jiang W., Tang C., Song H., Huang X., Zheng J., Yang Y., et al. Structure-Independent Conductance of Thiophene-Based Single-Stacking Junctions. Angew. Chem. 2020;8:3280–3286. doi: 10.1002/anie.201913344. PubMed DOI

Gorges J., Bädorf B., Grimme S., Hansen A. Efficient Computation of the Interaction Energies of Very Large Non-covalently Bound Complexes. Synlett. 2023;34:1135–1146. doi: 10.1055/s-0042-1753141. DOI

BIOVIA Materials Studio. Dassault Systèmes, Vélizy-Villacoublay: Paris, France. [(accessed on 8 December 2023)]. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/

Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16. Gaussian, Inc.; Wallingford, CT, USA: 2019. Revision C.01.

Boys S.F., Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Rappoport D., Furche F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI

Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006;124:034108. doi: 10.1063/1.2148954. PubMed DOI

Becke A.D., Johnson E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005;123:154101. doi: 10.1063/1.2065267. PubMed DOI

Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. DOI

ORCA4wB97X-3c. A Fortran Script for Setting up a ωB97X-3c Calculation with ORCA 5.0.3 or Higher. [(accessed on 9 December 2023)]. Available online: https://github.com/grimme-lab/ORCA4wB97X-3c.

Marshall M.S., Burns L.A., Sherrill C.D. Basis set convergence of the coupled-cluster correction, PubMed DOI

Weigend F., Häser M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997;97:331–340. doi: 10.1007/s002140050269. DOI

Weigend F., Häser M., Patzelt H., Ahlrichs R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998;294:143–152. doi: 10.1016/S0009-2614(98)00862-8. DOI

Balasubramani S.G., Chen G.P., Coriani S., Diedenhofen M., Frank M.S., Franzke Y.J., Furche F., Grotjahn R., Harding M.E., Hättig C., et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simula-tions. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC

Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI

Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI

Heßelmann A., Jansen G. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005;122:014103. doi: 10.1063/1.1824898. PubMed DOI

Heßelmann A., Jansen G. First-order intermolecular interaction energies from Kohn–Sham orbitals. Chem. Phys. Lett. 2002;357:464–470. doi: 10.1016/S0009-2614(02)00538-9. DOI

Heßelmann A., Jansen G. Intermolecular dispersion energies from time-dependent density functional theory. Chem. Phys. Lett. 2003;367:778–784. doi: 10.1016/S0009-2614(02)01796-7. DOI

Heßelmann A., Jansen G. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chem. Phys. Lett. 2002;362:319–325. doi: 10.1016/S0009-2614(02)01097-7. DOI

Moszynski R., Heijmen T.G.A., Jeziorski B. Symmetry-adapted perturbation theory for the calculation of Hartree–Fock interaction energies. Mol. Phys. 1996;88:741–758. doi: 10.1080/00268979650026262. DOI

Heßelmann A., Jansen G., Schütz M. Interaction Energy Contributions of H-Bonded and Stacked Structures of the AT and GC DNA Base Pairs from the Combined Density Functional Theory and Intermolecular Perturbation Theory Approach. J. Am. Chem. Soc. 2006;128:11730–11731. doi: 10.1021/ja0633363. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

On the Potential Energy Surface of the Pyrene Dimer

. 2024 Oct 06 ; 25 (19) : . [epub] 20241006

Revisiting the Most Stable Structures of the Benzene Dimer

. 2024 Jul 29 ; 25 (15) : . [epub] 20240729

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...