Reliable Dimerization Energies for Modeling of Supramolecular Junctions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 23-05293S
Czech Science Foundation
PubMed
38203773
PubMed Central
PMC10778993
DOI
10.3390/ijms25010602
PII: ijms25010602
Knihovny.cz E-zdroje
- Klíčová slova
- CCSD(T), DFT, interaction energy, noncovalent interactions, supramolecular junctions,
- MeSH
- dimerizace MeSH
- elektronika * MeSH
- fyzikální jevy MeSH
- polymery MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery MeSH
Accurate estimates of intermolecular interaction energy, ΔE, are crucial for modeling the properties of organic electronic materials and many other systems. For a diverse set of 50 dimers comprising up to 50 atoms (Set50-50, with 7 of its members being models of single-stacking junctions), benchmark ΔE data were compiled. They were obtained by the focal-point strategy, which involves computations using the canonical variant of the coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] performed while applying a large basis set, along with extrapolations of the respective energy components to the complete basis set (CBS) limit. The resulting ΔE data were used to gauge the performance for the Set50-50 of several density-functional theory (DFT)-based approaches, and of one of the localized variants of the CCSD(T) method. This evaluation revealed that (1) the proposed "silver standard" approach, which employs the localized CCSD(T) method and CBS extrapolations, can be expected to provide accuracy better than two kJ/mol for absolute values of ΔE, and (2) from among the DFT techniques, computationally by far the cheapest approach (termed "ωB97X-3c/vDZP" by its authors) performed remarkably well. These findings are directly applicable in cost-effective yet reliable searches of the potential energy surfaces of noncovalent complexes.
Zobrazit více v PubMed
Karshikoff A. Non-Covalent Interactions in Proteins. 2nd ed. World Scientific; Singapore: 2021. DOI
Jiao Y., Chen X.-Y., Stoddart J.F. Weak bonding strategies for achieving regio- and site-selective transformations. Chem. 2022;8:414–438. doi: 10.1016/j.chempr.2021.12.012. DOI
Haugland T.S., Schäfer C., Ronca E., Rubio A., Koch H. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021;154:094113. doi: 10.1063/5.0039256. PubMed DOI
Williams G.T., Haynes C.J.E., Fares M., Caltagirone C., Hiscock J.R., Gale P.A. Advances in applied supramolecular technologies. Chem. Rev. Soc. 2021;50:2737–2763. doi: 10.1039/D0CS00948B. PubMed DOI
Fiedler J., Bertland K., Borchert J.W., Corkery R.W., Eisfeld A., Gelbwaser-Klimovsky D., Greve M.M., Holst B., Jacobs K., Krüger M., et al. Perspectives on weak interactions in complex materials at different length scales. Phys. Chem. Chem. Phys. 2023;25:2671–2705. doi: 10.1039/D2CP03349F. PubMed DOI
Li T., Bandari V.K., Schmid O.G. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. Adv. Mater. 2023;35:2209088. doi: 10.1002/adma.202209088. PubMed DOI
Pan X., Montes E., Rojas W.Y., Lawson B., Vázquez H., Kamentska M. Cooperative Self-Assembly of Dimer Junctions Driven by π Stacking Leads to Conductance Enhancement. Nano Lett. 2023;23:6937–6943. doi: 10.1021/acs.nanolett.3c01540. PubMed DOI
Homma K., Kaneko S., Tsukagoshi K., Nishino T. Intermolecular and Electrode-Molecule Bonding in a Single Dimer Junction of Naphthalenethiol as Revealed by Surface-Enhanced Raman Scattering Combined with Transport Measurements. J. Am. Chem. Soc. 2023;145:15788–15795. doi: 10.1021/jacs.3c02050. PubMed DOI PMC
Li R., Zhou Y., Ge W., Zheng J., Zhu Y., Bai J., Li X., Lin L., Duan H., Shi J., et al. Strain of Supramolecular Interactions in Single-Stacking Junctions. Angew. Chem. 2022;61:e202200191. doi: 10.1002/anie.202200191. PubMed DOI
Zhang C., Cheng J., Wu Q., Hou S., Feng S., Jiang B., Lambert C.J., Gao X., Li Y., Li J. Enhanced π–π Stacking between Dipole-Bearing Single Molecules Revealed by Conductance Measurement. J. Am. Chem. Soc. 2023;145:1617–1630. doi: 10.1021/jacs.2c09656. PubMed DOI
Zhou P., Fu Y., Wang M., Qiu R., Wang Y., Stoddart J.F., Wang Y., Chen H. Robust Single-Supermolecule Switches Operating in Response to Two Different Noncovalent Interaction. J. Am. Chem. Soc. 2023;145:18800–18811. doi: 10.1021/jacs.3c03282. PubMed DOI
Li X., Zheng Y., Zhou Y., Zhu Z., Wu J., Ge W., Zhang Y., Ye Y., Chen L., Shi J., et al. Supramolecular Transistors with Quantum Interference Effect. J. Am. Chem. Soc. 2023;145:21679–21686. doi: 10.1021/jacs.3c08615. PubMed DOI
Li X., Ge W., Guo S., Bai J., Hong W. Characterization and Application of Supramolecular Junctions. Angew. Chem. 2023;62:202216819. doi: 10.1002/anie.202216819. PubMed DOI
Puzzarini C., Spada L., Alessandrini S., Barone V. The challenge of non-covalent interactions: Theory meets experiment for reconciling accuracy and interpretation. J. Phys. Condens. Matter. 2020;32:343002. doi: 10.1088/1361-648X/ab8253. PubMed DOI
Calvin J.A., Peng C., Rishi V., Kumar A., Valeev E.F. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021;121:1203–1231. doi: 10.1021/acs.chemrev.0c00006. PubMed DOI
Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets: Hydrogen Bonding. J. Chem. Theory Comput. 2020;16:2355–2368. doi: 10.1021/acs.jctc.9b01265. PubMed DOI
Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 2: Hydrogen Bonding in an Extended Chemical Space. J. Chem. Theory Comput. 2020;16:6305–6316. doi: 10.1021/acs.jctc.0c00715. PubMed DOI
Kříž K., Nováček M., Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021;17:1548–1561. doi: 10.1021/acs.jctc.0c01341. PubMed DOI
Kříž K., Řezáč J. Non-covalent interactions atlas benchmark data sets 4: σ-hole interactions. Phys. Chem. Chem. Phys. 2022;24:14794–14804. doi: 10.1039/D2CP01600A. PubMed DOI
Řezáč J. Non-Covalent Interactions Atlas benchmark data sets 5: London dispersion in an extended chemical space. Phys. Chem. Chem. Phys. 2022;24:14780–14793. doi: 10.1039/D2CP01602H. PubMed DOI
Sparrow Z.M., Ernst B.G., Joo P.T., Lao K.U., DiStasio R.A. NENCI-2021. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts. J. Chem. Phys. 2021;155:184303. doi: 10.1063/5.0068862. PubMed DOI
Spronk S.A., Glick Z.L., Metcalf D.P., Sherrill C.D., Cheney D.L. A quantum chemical interaction energy dataset for accurately modeling protein-ligand interactions. Sci. Data. 2023;10:619. doi: 10.1038/s41597-023-02443-1. PubMed DOI PMC
Santra G., Semidalas E., Mehta N., Karton A., Martin J.M.L. S66x8 noncovalent interactions revisited: New benchmark and performance of composite localized coupled-cluster methods. Phys. Chem. Chem. Phys. 2022;24:25555–25570. doi: 10.1039/D2CP03938A. PubMed DOI
Donchev A.G., Taube A.G., Decolvenaere E., Hargus C., McGibbon R.T., Law K.-H., Gregersen B.A., Li J.-L., Palmo K., Siva K., et al. Quantum chemical benchmark databases of gold-standard dimer interaction energies. Sci. Data. 2021;8:55. doi: 10.1038/s41597-021-00833-x. PubMed DOI PMC
Czernek J., Brus J. On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions. Int. J. Mol. Sci. 2023;24:13349. doi: 10.3390/ijms241713349. PubMed DOI PMC
Nagy P.R., Gyevi-Nagy L., Lőrincz B.D., Kállay M. Pursuing the bases set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: Case study on the S66 compilation. Mol. Phys. 2022;121:e2109526. doi: 10.1080/00268976.2022.2109526. DOI
Nagy P.R., Kállay M. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods. J. Chem. Theory Comput. 2019;15:5275–5298. doi: 10.1021/acs.jctc.9b00511. PubMed DOI
Al-Hamdani Y.S., Nagy P.R., Zen A., Barton D., Kállay M., Bradenburg J.G., Tchatkenko A. Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 2021;12:3927. doi: 10.1038/s41467-021-24119-3. PubMed DOI PMC
Riplinger C., Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138:034106. doi: 10.1063/1.4773581. PubMed DOI
Riplinger C., Pinski P., Becker U., Valeev E.F., Neese F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI
Riplinger C., Sandhoefer B., Hansen A., Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139:134101. doi: 10.1063/1.4821834. PubMed DOI
Guo Y., Riplinger C., Becker U., Liakos D.G., Minenkov Y., Cavallo L., Neese F. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)] J. Chem. Phys. 2018;148:011101. doi: 10.1063/1.5011798. PubMed DOI
Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI
Müller M., Hansen A., Grimme S. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. J. Chem. Phys. 2023;158:014103. doi: 10.1063/5.0133026. PubMed DOI
Nickerson C.J., Bryenton K.R., Price A.J.A., Johnson E.R. Comparison of Density-Functional Theory Dispersion Corrections for the DES15K Database. J. Chem. Phys. A. 2023;127:8712–8722. doi: 10.1021/acs.jpca.3c04332. PubMed DOI
Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020;10:e1452. doi: 10.1002/wcms.1452. DOI
Shahbaz M., Szalewicz K. Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions. Theor. Chem. Acc. 2019;138:25. doi: 10.1007/s00214-019-2414-5. DOI
Pinski P., Riplinger C., Becker U., Valeev E.F., Neese F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 2015;143:034108. doi: 10.1063/1.4926879. PubMed DOI
Sutradhar D., Sarmah A., Hobza P., Chandra A.K. Strong Be−N Interaction Induced Complementary Chemical Tuning to Design a Dual-gated Single Molecule Junction. Chem. Eur. J. 2023;29:e202301473. doi: 10.1002/chem.202301473. PubMed DOI
Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Kendall R.A., Dunning T.H., Jr. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Czernek J., Brus J., Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J. Chem. Phys. 2022;156:204303. doi: 10.1063/5.0093557. PubMed DOI
Czernek J., Brus J., Czerneková V. A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. Int. J. Mol. Sci. 2022;23:15773. doi: 10.3390/ijms232415773. PubMed DOI PMC
Kesharwani M.K., Karton M., Sylvetsky N., Martin J.M.L. The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Austr. J. Chem. 2018;71:238–248. doi: 10.1071/CH17588. DOI
Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC
Bootsma A.N., Doney A.C., Wheeler S.E. Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains. J. Am. Chem. Soc. 2019;141:11027–11035. doi: 10.1021/jacs.9b00936. PubMed DOI
Becke A. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. J. Chem. Phys. 1997;107:8554–8560. doi: 10.1063/1.475007. DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Řezáč J., Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016;116:5038–5071. doi: 10.1021/acs.chemrev.5b00526. PubMed DOI
Huan T.D., Ramprasad R. Polymer Structure Prediction from First Principles. J. Phys. Chem. Lett. 2020;11:5823–5829. doi: 10.1021/acs.jpclett.0c01553. PubMed DOI
Li X., Wu Q., Bai J., Hou S., Jiang W., Tang C., Song H., Huang X., Zheng J., Yang Y., et al. Structure-Independent Conductance of Thiophene-Based Single-Stacking Junctions. Angew. Chem. 2020;8:3280–3286. doi: 10.1002/anie.201913344. PubMed DOI
Gorges J., Bädorf B., Grimme S., Hansen A. Efficient Computation of the Interaction Energies of Very Large Non-covalently Bound Complexes. Synlett. 2023;34:1135–1146. doi: 10.1055/s-0042-1753141. DOI
BIOVIA Materials Studio. Dassault Systèmes, Vélizy-Villacoublay: Paris, France. [(accessed on 8 December 2023)]. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16. Gaussian, Inc.; Wallingford, CT, USA: 2019. Revision C.01.
Boys S.F., Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI
Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Rappoport D., Furche F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI
Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006;124:034108. doi: 10.1063/1.2148954. PubMed DOI
Becke A.D., Johnson E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005;123:154101. doi: 10.1063/1.2065267. PubMed DOI
Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. DOI
ORCA4wB97X-3c. A Fortran Script for Setting up a ωB97X-3c Calculation with ORCA 5.0.3 or Higher. [(accessed on 9 December 2023)]. Available online: https://github.com/grimme-lab/ORCA4wB97X-3c.
Marshall M.S., Burns L.A., Sherrill C.D. Basis set convergence of the coupled-cluster correction, PubMed DOI
Weigend F., Häser M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997;97:331–340. doi: 10.1007/s002140050269. DOI
Weigend F., Häser M., Patzelt H., Ahlrichs R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998;294:143–152. doi: 10.1016/S0009-2614(98)00862-8. DOI
Balasubramani S.G., Chen G.P., Coriani S., Diedenhofen M., Frank M.S., Franzke Y.J., Furche F., Grotjahn R., Harding M.E., Hättig C., et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simula-tions. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC
Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI
Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI
Heßelmann A., Jansen G. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005;122:014103. doi: 10.1063/1.1824898. PubMed DOI
Heßelmann A., Jansen G. First-order intermolecular interaction energies from Kohn–Sham orbitals. Chem. Phys. Lett. 2002;357:464–470. doi: 10.1016/S0009-2614(02)00538-9. DOI
Heßelmann A., Jansen G. Intermolecular dispersion energies from time-dependent density functional theory. Chem. Phys. Lett. 2003;367:778–784. doi: 10.1016/S0009-2614(02)01796-7. DOI
Heßelmann A., Jansen G. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chem. Phys. Lett. 2002;362:319–325. doi: 10.1016/S0009-2614(02)01097-7. DOI
Moszynski R., Heijmen T.G.A., Jeziorski B. Symmetry-adapted perturbation theory for the calculation of Hartree–Fock interaction energies. Mol. Phys. 1996;88:741–758. doi: 10.1080/00268979650026262. DOI
Heßelmann A., Jansen G., Schütz M. Interaction Energy Contributions of H-Bonded and Stacked Structures of the AT and GC DNA Base Pairs from the Combined Density Functional Theory and Intermolecular Perturbation Theory Approach. J. Am. Chem. Soc. 2006;128:11730–11731. doi: 10.1021/ja0633363. PubMed DOI
On the Potential Energy Surface of the Pyrene Dimer
Revisiting the Most Stable Structures of the Benzene Dimer