A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes

. 2022 Dec 12 ; 23 (24) : . [epub] 20221212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36555413

Grantová podpora
GA 20-01233S Czech Science Foundation

There has been a growing interest in quantitative predictions of the intermolecular binding energy of large complexes. One of the most important quantum chemical techniques capable of such predictions is the domain-based local pair natural orbital (DLPNO) scheme for the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)], whose results are extrapolated to the complete basis set (CBS) limit. Here, the DLPNO-based focal-point method is devised with the aim of obtaining CBS-extrapolated values that are very close to their canonical CCSD(T)/CBS counterparts, and thus may serve for routinely checking a performance of less expensive computational methods, for example, those based on the density-functional theory (DFT). The efficacy of this method is demonstrated for several sets of noncovalent complexes with varying amounts of the electrostatics, induction, and dispersion contributions to binding (as revealed by accurate DFT-based symmetry-adapted perturbation theory (SAPT) calculations). It is shown that when applied to dimeric models of poly(3-hydroxybutyrate) chains in its two polymorphic forms, the DLPNO-CCSD(T) and DFT-SAPT computational schemes agree to within about 2 kJ/mol of an absolute value of the interaction energy. These computational schemes thus should be useful for a reliable description of factors leading to the enthalpic stabilization of extended systems.

Zobrazit více v PubMed

Bernstein E. Intra- and Intermolecular Interactions between Non-covalently Bonded Species. 1st ed. Elsevier; Amsterdam, The Netherlands: 2020.

Jin M.Y., Zhen Q., Xiao D., Tao G., Xing X., Yu P., Xu C. Engineered non-covalent π interactions as key elements for chiral recognition. Nat. Commun. 2022;13:3276. doi: 10.1038/s41467-022-31026-8. PubMed DOI PMC

Jiao Y., Chen X.-Y., Stoddard J.F. Weak bonding strategies for achieving regio- and site-selective transformations. Chem. 2022;8:414–438. doi: 10.1016/j.chempr.2021.12.012. DOI

Jena S., Dutta J., Tulsiyan K.D., Sahu A.K., Choudhury S.S., Biswal H.S. Noncovalent interactions in proteins and nucleic acids: Beyond hydrogen bonding and π-stacking. Chem. Soc. Rev. 2022;51:4261–4286. doi: 10.1039/D2CS00133K. PubMed DOI

Puzzarini C., Spada L., Alessandrini S., Barone V. The challenge of non-covalent interactions: Theory meets experiment for reconciling accuracy and interpretation. J. Phys. Condens. Matter. 2020;32:343002. doi: 10.1088/1361-648X/ab8253. PubMed DOI

Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020;10:e1452. doi: 10.1002/wcms.1452. DOI

Shahbaz M., Szalewicz K. Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions. Theor. Chem. Acc. 2019;138:25. doi: 10.1007/s00214-019-2414-5. DOI

Carter-Fenk C., Lao K.U., Herbert J.M. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Acc. Chem. Res. 2021;54:3679–3690. doi: 10.1021/acs.accounts.1c00387. PubMed DOI

Sharapa D.I., Margraf J.T., Hesselmann A., Clark T. Accurate Intermolecular Potential for the C60 Dimer: The Performance of Different Levels of Quantum Theory. J. Chem. Theory Comput. 2017;13:274–285. doi: 10.1021/acs.jctc.6b00869. PubMed DOI

Szalewicz K., Jeziorski J. Physical mechanisms of intermolecular interactions from symmetry-adapted perturbation theory. J. Molec. Model. 2022;28:273. doi: 10.1007/s00894-022-05190-z. PubMed DOI

Calvin J.A., Peng C., Rishi V., Kumar A., Valeev E.F. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021;121:1203–1231. doi: 10.1021/acs.chemrev.0c00006. PubMed DOI

Burns L.A., Faver J.C., Zheng Z., Marshall M.S., Smith D.G.A., Vanommeslaeghe K., MacKerrel A.D., Merz K.M., Sherrill C.D. The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. J. Chem. Phys. 2017;147:161727. doi: 10.1063/1.5001028. PubMed DOI PMC

Zhang I.Y., Grüneis A. Coupled Cluster Theory in Materials Science. Front. Mater. 2019;6:123. doi: 10.3389/fmats.2019.00123. DOI

Kříž K., Nováček M., Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 3: Repulsive Contacts. J. Chem. Theory Comput. 2021;17:1548–1561. doi: 10.1021/acs.jctc.0c01341. PubMed DOI

Kříž K., Řezáč J. Non-covalent interactions atlas benchmark data sets 4: σ-hole interactions. Phys. Chem. Chem. Phys. 2022;24:14794–14804. doi: 10.1039/D2CP01600A. PubMed DOI

Spicher S., Caldeweyher E., Hansen A., Grimme S. Benchmarking London dispersion corrected density functional theory for noncovalent ion–π interactions. Phys. Chem. Chem. Phys. 2021;23:11635–11648. doi: 10.1039/D1CP01333E. PubMed DOI

Huang H.-H., Wang Y.-S., Chao S.D. A Minimum Quantum Chemistry CCSD(T)/CBS Data Set of Dimeric Interaction Energies for Small Organic Functional Groups: Heterodimers. ACS Omega. 2022;7:20059–20080. doi: 10.1021/acsomega.2c01888. PubMed DOI PMC

Czernek J., Brus J. Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments. Int. J. Mol. Sci. 2020;21:7908. doi: 10.3390/ijms21217908. PubMed DOI PMC

Gyevi-Nagy L., Kállay M., Nagy P.R. Integral-direct and parallel implementation of the CCSD(T) method: Algorithmic developments and large-scale applications. J. Chem. Theory Comput. 2020;16:366–384. doi: 10.1021/acs.jctc.9b00957. PubMed DOI

Nagy P.R., Gyevi-Nagy L., Lőrincz B.D., Kállay M. Pursuing the bases set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: Case study on the S66 compilation. Mol. Phys. 2022:e2109526. doi: 10.1080/00268976.2022.2109526. DOI

Riplinger C., Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138:034106. doi: 10.1063/1.4773581. PubMed DOI

Riplinger C., Sandhoefer B., Hansen A., Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139:134101. doi: 10.1063/1.4821834. PubMed DOI

Riplinger C., Pinski P., Becker U., Valeev E.F., Neese F. Sparse maps–A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI

Guo Y., Riplinger C., Becker U., Liakos D.G., Minenkov Y., Cavallo L., Neese F. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)] J. Chem. Phys. 2018;148:011101. doi: 10.1063/1.5011798. PubMed DOI

Guo Y., Riplinger C., Liakos D.G., Becker U., Saitow M., Neese F. Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD(T0/T)] J. Chem. Phys. 2020;152:024116. doi: 10.1063/1.5127550. PubMed DOI

Liakos D.G., Sparta M., Kesharwani M.K., Martin J.M.L., Neese F. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. J. Chem. Theory Comput. 2015;11:1525–1539. doi: 10.1021/ct501129s. PubMed DOI

Liakos D.G., Guo Y., Neese F. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. J. Phys. Chem. A. 2020;124:90–100. doi: 10.1021/acs.jpca.9b05734. PubMed DOI

Chen J.-L., Sun T., Wang Y.-B., Wang W. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy. J. Comput. Chem. 2020;41:1252–1260. doi: 10.1002/jcc.26171. PubMed DOI

Beck M.E., Riplinger C., Neese F. Unraveling individual host–guest interactions in molecular recognition from first principles quantum mechanics: Insights into the nature of nicotinic acetylcholine receptor agonist binding. J. Comput. Chem. 2021;42:293–302. doi: 10.1002/jcc.26454. PubMed DOI

Villot C., Ballesteros F., Wang D., Lao K.U. Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C60 Dimer, DNA–Ellipticine, and HIV–Indinavir. J. Phys. Chem. A. 2022;126:4326–4341. doi: 10.1021/acs.jpca.2c01421. PubMed DOI

Sandler I., Chen J., Taylor M., Sharma S., Ho J. Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. J. Phys. Chem. A. 2021;125:1553–1563. doi: 10.1021/acs.jpca.0c11270. PubMed DOI

Kruse H., Mladek A., Gkionis K., Hansen A., Grimme S., Sponer J. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit. J. Chem. Theory Comput. 2015;11:4972–4991. doi: 10.1021/acs.jctc.5b00515. PubMed DOI

Altun A., Neese F., Bistoni G. Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations. J. Chem. Theory Comput. 2020;16:6142–6149. doi: 10.1021/acs.jctc.0c00344. PubMed DOI PMC

East A.L.L., Allen D.L. The heat of formation of NCO. J. Chem. Phys. 1993;99:4638–4650. doi: 10.1063/1.466062. DOI

Jurečka P., Šponer J., Černý J., Hobza P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 2006;8:1985–1993. doi: 10.1039/B600027D. PubMed DOI

Wang H., Tashiro K. Reinvestigation of Crystal Structure and Intermolecular Interactions of Biodegradable Poly(3-Hydroxybutyrate) α-Form and the Prediction of Its Mechanical Property. Macromolecules. 2016;49:581–594. doi: 10.1021/acs.macromol.5b02310. DOI

Phongtamrug S., Tashiro K. X-ray Crystal Structure Analysis of Poly(3-hydroxybutyrate) β-Form and the Proposition of a Mechanism of the Stress-Induced α-to-β Phase Transition. Macromolecules. 2019;52:2995–3009. doi: 10.1021/acs.macromol.9b00225. DOI

Sedlak R., Janowski T., Pitoňák M., Řezáč J., Pulay P., Hobza P. Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes. J. Chem. Theory Comput. 2013;9:3364–3374. doi: 10.1021/ct400036b. PubMed DOI PMC

Kent P.R.C., Annaberdiyev A., Benali A., Bennett M.C., Landinez Borda E.J., Doak P., Hao H., Jordan K.D., Krogel J.T., Kylänpää I., et al. QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo. J. Chem. Phys. 2020;152:174105. doi: 10.1063/5.0004860. PubMed DOI

Benali A., Shin H., Heinonen O. Quantum Monte Carlo benchmarking of large noncovalent complexes in the L7 benchmark set. J. Chem. Phys. 2020;153:194113. doi: 10.1063/5.0026275. PubMed DOI

Morales-Silva M.A., Jordan K.D., Shulenburger L., Wagner L.K. Frontiers of stochastic electronic structure calculations. J. Chem. Phys. 2021;154:170401. doi: 10.1063/5.0053674. PubMed DOI

Ballesteros F., Dunivan S., Lao K.U. Coupled cluster benchmarks of large noncovalent complexes: The L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene. J. Chem. Phys. 2021;154:154104. doi: 10.1063/5.0042906. PubMed DOI

Al-Hamdani Y.S., Nagy P.R., Zen A., Barton D., Kállay M., Bradenburg J.G., Tchatkenko A. Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 2021;12:3927. doi: 10.1038/s41467-021-24119-3. PubMed DOI PMC

Boys S.F., Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI

Riley K.E., Pitoňák M., Jurečka P., Hobza P. Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories. Chem. Rev. 2010;110:5023–5063. doi: 10.1021/cr1000173. PubMed DOI

Marshall M.S., Burns L.A., Sherrill C.D. Basis set convergence of the coupled-cluster correction: Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. J. Chem. Phys. 2011;135:194102. doi: 10.1063/1.3659142. PubMed DOI

Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC

Bootsma A.N., Doney A.C., Wheeler S.E. Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains. J. Am. Chem. Soc. 2019;141:11027–11035. doi: 10.1021/jacs.9b00936. PubMed DOI

Liu Y., Li J., Felker P.M., Bačić Z. HCl–H2O dimer: An accurate full-dimensional potential energy surface and fully coupled quantum calculations of intra- and intermolecular vibrational states and frequency shifts. Phys. Chem. Chem. Phys. 2021;23:7101–7114. doi: 10.1039/D1CP00865J. PubMed DOI

Sexton T.M., Van Benschoten W.Z., Tschumper G.S. Dissociation energy of the HCN⋯HF dimer. Chem. Phys. Lett. 2020;748:137382. doi: 10.1016/j.cplett.2020.137382. DOI

Hoobler P.R., Turney J.M., Agarwal J., Schaefer III J.F. Fundamental Vibrational Analyses of the HCN Monomer, Dimer and Associated Isotopologues. ChemPhysChem. 2018;19:3257–3265. doi: 10.1002/cphc.201800728. PubMed DOI

Carter-Fenk K., Lao K.U., Liu K.-Y., Herbert J.M. Accurate and Efficient ab Initio Calculations for Supramolecular Complexes: Symmetry-Adapted Perturbation Theory with Many-Body Dispersion. J. Phys. Chem. Lett. 2019;10:2706–2714. doi: 10.1021/acs.jpclett.9b01156. PubMed DOI

Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI

Pinski P., Riplinger C., Valeev E.F., Neese F. Sparse maps–A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 2015;143:034108. doi: 10.1063/1.4926879. PubMed DOI

Vogiatzis K.D., Klopper W. Accurate non-covalent interactions with basis-set corrections from interference-corrected perturbation theory: Comparison with the S22B database. Mol. Phys. 2013;111:2299–2305. doi: 10.1080/00268976.2013.805888. DOI

Peterson K.A., Woon D.E., Dunnig T.J., Jr. Benchmark calculations with correlated wave functions. J. Chem. Phys. 1994;100:7410–7415. doi: 10.1063/1.466884. DOI

Takatani T., Hohenstein E.G., Malagoli M., Marshall M.C., Sherrill C.D. Basis set consistent revision of the S22 test set of noncovalent interaction energies. J. Chem. Phys. 2010;132:144104. doi: 10.1063/1.3378024. PubMed DOI

Ye H.-Z., Berkelbach T.C. Correlation-Consistent Gaussian Basis Sets for Solids Made Simple. J. Chem. Theory Comput. 2022;18:1595–1606. doi: 10.1021/acs.jctc.1c01245. PubMed DOI

Neese F., Valeev E.F. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? J. Chem. Theory Comput. 2011;7:33–43. doi: 10.1021/ct100396y. PubMed DOI

Altun A., Ghosh S., Riplinger C., Neese F., Bastoni G. Addressing the System-Size Dependence of the Local Approximation Error in Coupled-Cluster Calculations. J. Phys. Chem. A. 2021;125:9932–9939. doi: 10.1021/acs.jpca.1c09106. PubMed DOI PMC

Kesharwani M.K., Karton M., Sylvetsky N., Martin J.M.L. The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Austr. J. Chem. 2018;71:238–248. doi: 10.1071/CH17588. DOI

Ehlers S., Grimme S., Hansen A. Conformational Energy Benchmark for Longer n-Alkane Chains. J. Phys. Chem. A. 2022;126:3521–3535. doi: 10.1021/acs.jpca.2c02439. PubMed DOI

Li X., Spada L., Alessandrini S., Zheng Y., Lengsfeld K.G., Grabow J.-U., Feng G., Puzzarini C., Barone V. Stacked but not Stuck: Unveiling the Role of π→π* Interactions with the Help of the Benzofuran–Formaldehyde Complex. Angew. Chem. Int. Ed. 2022;61:264–270. doi: 10.1002/anie.202113737. PubMed DOI PMC

Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI

Al-Hamdani Y.S., Tkatchenko A. Understanding non-covalent interactions in larger molecular complexes from first principles. J. Chem. Phys. 2019;150:010901. doi: 10.1063/1.5075487. PubMed DOI PMC

Czernek J., Brus J., Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J. Chem. Phys. 2022;156:204303. doi: 10.1063/5.0093557. PubMed DOI

Becucci M., Mazzoni F., Pietraperzia G., Řezáč J., Nachtigallová D., Hobza P. Non-covalent interactions in anisole–(CO2)n (n = 1, 2) complexes. Phys. Chem. Chem. Phys. 2017;19:22749–22758. doi: 10.1039/C7CP03763E. PubMed DOI

Leforestier C., Tekin A., Jansen G., Herman M. First principles potential for the acetylene dimer and refinement by fitting to experiments. J. Chem. Phys. 2011;135:234306. doi: 10.1063/1.3668283. PubMed DOI

Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16. Gaussian, Inc.; Wallingford, CT, USA: 2019. Revision C.01.

The Benchmark Energy & Geometry Database (BEGDB) [(accessed on 5 October 2022)]. Available online: http://www.begdb.org/

Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI

Vahtras O., Almlöf J., Feyereisen M.W. Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett. 1993;213:514–518. doi: 10.1016/0009-2614(93)89151-7. DOI

Weigend F., Häser M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997;97:331–340. doi: 10.1007/s002140050269. DOI

Weigend F., Häser M., Patzelt H., Ahlrichs R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998;294:143–152. doi: 10.1016/S0009-2614(98)00862-8. DOI

Balasubramani S.G., Chen G.P., Coriani S., Diedenhofen M., Frank M.S., Franzke Y.J., Furche F., Grotjahn R., Harding M.E., Hättig C., et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC

Neese F. Software update: The ORCA program system–Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace