Revisiting the Most Stable Structures of the Benzene Dimer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
24-15057L
Czech Science Foundation
PubMed
39125845
PubMed Central
PMC11312267
DOI
10.3390/ijms25158272
PII: ijms25158272
Knihovny.cz E-zdroje
- Klíčová slova
- CCSD(T), SAPT, interaction energy, intermolecular stacking, noncovalent interactions,
- MeSH
- benzen * chemie MeSH
- dimerizace * MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- termodynamika MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzen * MeSH
The benzene dimer (BD) is an archetypal model of π∙∙∙π and C-H∙∙∙π noncovalent interactions as they occur in its cofacial and perpendicular arrangements, respectively. The enthalpic stabilization of the related BD structures has been debated for a long time and is revisited here. The revisit is based on results of computations that apply the coupled-cluster theory with singles, doubles and perturbative triples [CCSD(T)] together with large basis sets and extrapolate results to the complete basis set (CBS) limit in order to accurately characterize the three most important stationary points of the intermolecular interaction energy (ΔE) surface of the BD, which correspond to the tilted T-shaped (TT), fully symmetric T-shaped (FT) and slipped-parallel (SP) structures. In the optimal geometries obtained by searching extensive sets of the CCSD(T)/CBS ΔE data of the TT, FT and SP arrangements, the resulting ΔE values were -11.84, -11.34 and -11.21 kJ/mol, respectively. The intrinsic strength of the intermolecular bonding in these configurations was evaluated by analyzing the distance dependence of the CCSD(T)/CBS ΔE data over wide ranges of intermonomer separations. In this way, regions of the relative distances that favor BD structures with either π∙∙∙π or C-H∙∙∙π interactions were found and discussed in a broader context.
Zobrazit více v PubMed
Karshikoff A. Non-Covalent Interactions in Proteins. 2nd ed. World Scientific; Singapore: 2021. DOI
Cerveri A., Scarica G., Sparascio S., Hoch M., Chiminelli M., Tegoni M., Protti S., Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chem. Eur. J. 2023;29:e202304010. doi: 10.1002/chem.202304010. PubMed DOI
Guo M., Jayakumar S., Luo M., Kong X., Li C., Li H., Chen J. The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nat. Commun. 2022;13:1770. doi: 10.1038/s41467-022-29299-0. PubMed DOI PMC
Zhang Y.F., Zhang Y.N., Ding R., Zhang K., Guo H.Y., Lin Y.Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. Small. 2024;20:2310838. doi: 10.1002/smll.202310838. PubMed DOI
Savastano M., de la Torre M.D.L., Pagliai M., Poggi G., Ridi F., Bazzicalupi C., Melguizo M., Bianchi A. Crystal engineering of high explosives through lone pair-π interactions: Insights for improving thermal safety. iScience. 2023;26:107330. doi: 10.1016/j.isci.2023.107330. PubMed DOI PMC
Pan X., Montes E., Rojas W.Y., Lawson B., Vázquez H., Kamentska M. Cooperative Self-Assembly of Dimer Junctions Driven by π Stacking Leads to Conductance Enhancement. Nano Lett. 2023;23:6937–6943. doi: 10.1021/acs.nanolett.3c01540. PubMed DOI
Tuttle M.R., Davis S.T., Zhang S. Synergistic Effect of Hydrogen Bonding and π–π Stacking Enables Long Cycle Life in Organic Electrode Materials. ACS Energy Lett. 2021;6:643–649. doi: 10.1021/acsenergylett.0c02604. DOI
Carter-Fenk K., Liu M.L., Pujal L., Loipersberger M., Tsanai M., Vernon R.M., Forman-Kay J.D., Head-Gordon M., Heidar-Zadeh F., Head-Gordon T. The Energetic Origins of Pi-Pi Contacts in Proteins. J. Am. Chem. Soc. 2023;145:24836–24851. doi: 10.1021/jacs.3c09198. PubMed DOI PMC
Samaroo S., Hengesbach C., Bruggeman C., Carducci N.G.G., Mtemeri L., Staples R.J., Guarr T., Hickey D.P. C–H···π interactions disrupt electrostatic interactions between non-aqueous electrolytes to increase solubility. Nat. Chem. 2023;15:1365–1373. doi: 10.1038/s41557-023-01291-1. PubMed DOI
Herman K.M., Aprà E., Xantheas S.S. A critical comparison of CH···π versus π···π interactions in the benzene dimer: Obtaining benchmarks at the CCSD(T) level and assessing the accuracy of lower scaling methods. Phys. Chem. Chem. Phys. 2023;25:4824–4838. doi: 10.1039/D2CP04335A. PubMed DOI
Tummanapelli A.K., Vasudevan S. Communication: Benzene dimer—The free energy landscape. J. Chem. Phys. 2013;139:201102. doi: 10.1063/1.4834855. PubMed DOI
Van der Avoird A., Podeszwa R., Ensing B., Szalewicz K. Comment on “Communication: Benzene dimer—The free energy landscape” [J. Chem. Phys. 139, 201102 (2013)] J. Chem. Phys. 2014;140:227101. doi: 10.1063/1.4882015. PubMed DOI
Tummanapelli A.K., Vasudevan S. Response to “Comment on ‘Communication: Benzene dimer—The free energy landscape’” [J. Chem. Phys. 140, 227101 (2014)] J. Chem. Phys. 2014;140:227102. doi: 10.1063/1.4882016. PubMed DOI
Law K.S., Schauer M., Bernstein E.R. Dimers of aromatic molecules: (Benzene)2, (toluene)2, and benzene–toluene. J. Chem. Phys. 1984;81:4871–4882. doi: 10.1063/1.447514. DOI
Arunan E., Gutowsky H.S. The rotational spectrum, structure and dynamics of a benzene dimer. J. Chem. Phys. 1993;98:4294–4296. doi: 10.1063/1.465035. DOI
Erlekam U., Frankowski M., Meijer G., von Helden G. An experimental value for the B1u C–H stretch mode in benzene. J. Chem. Phys. 2006;124:171101. doi: 10.1063/1.2198828. PubMed DOI
Lee E.C., Kim D., Jurečka P., Tarakeshwar P., Hobza P., Kim K.S. Understanding of Assembly Phenomena by Aromatic−Aromatic Interactions: Benzene Dimer and the Substituted Systems. J. Phys. Chem. A. 2007;111:3446–3457. doi: 10.1021/jp068635t. PubMed DOI
Van der Avoird A., Podeszwa R., Szalewicz K., Leforestier C., van Harrevelt R., Bunker P.R., Schnell M., von Helden G., Meijer G. Vibration–rotation-tunneling states of the benzene dimer: An ab initio study. Phys. Chem. Chem. Phys. 2010;12:8219–8240. doi: 10.1039/c002653k. PubMed DOI
Schnell M., Erlekam U., Bunker P.R., von Helden G., Grabow J.-U., Meijer G., van der Avoird A. Structure of the Benzene Dimer—Governed by Dynamics. Angew. Chem. Int. Ed. 2013;52:5180–5183. doi: 10.1002/anie.201300653. PubMed DOI
Fatima M., Steber A.L., Poblotzki A., Pérez C., Zinn S., Schnell M. Rotational Signatures of Dispersive Stacking in the Formation of Aromatic Dimers. Angew. Chem. Int. Ed. 2019;58:3108–3113. doi: 10.1002/anie.201812556. PubMed DOI
Grover J.R., Walters E.A., Hui E.T. Dissociation Energies of the Benzene Dimer and Dimer Cation. J. Phys. Chem. 1987;91:3233–3237. doi: 10.1021/j100296a026. DOI
Krause H., Ernstberger B., Neusser H.J. Binding energies of small benzene clusters. Chem. Phys. Lett. 1991;184:411–417. doi: 10.1016/0009-2614(91)80010-U. DOI
Calvin J.A., Peng C., Rishi V., Kumar A., Valeev E.F. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021;121:1203–1231. doi: 10.1021/acs.chemrev.0c00006. PubMed DOI
Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020;10:e1452. doi: 10.1002/wcms.1452. DOI
Shahbaz M., Szalewicz K. Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions. Theor. Chem. Acc. 2019;138:25. doi: 10.1007/s00214-019-2414-5. DOI
Carter-Fenk C., Lao K.U., Herbert J.M. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Acc. Chem. Res. 2021;54:3679–3690. doi: 10.1021/acs.accounts.1c00387. PubMed DOI
Morales-Silva M.A., Jordan K.D., Shulenburger L., Wagner L.K. Frontiers of stochastic electronic structure calculations. J. Chem. Phys. 2021;154:170401. doi: 10.1063/5.0053674. PubMed DOI
Al-Hamdani Y.S., Nagy P.R., Zen A., Barton D., Kállay M., Bradenburg J.G., Tkatchenko A. Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 2021;12:3927. doi: 10.1038/s41467-021-24119-3. PubMed DOI PMC
Grimme S., Goerigk L., Fink R.F. Spin-component-scaled electron correlation methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:886–906. doi: 10.1002/wcms.1110. DOI
Miliordos E., Aprà E., Xantheas S.S. Benchmark Theoretical Study of the π–π Binding Energy in the Benzene Dimer. J. Phys. Chem. A. 2014;118:7568–7578. doi: 10.1021/jp5024235. PubMed DOI
Carter-Fenk K., Herbert J.M. Electrostatics does not dictate the slip-stacked arrangement of aromatic π–π interactions. Chem. Sci. 2020;11:6758–6765. doi: 10.1039/D0SC02667K. PubMed DOI PMC
Czernek J., Brus J., Czerneková V., Kobera L. Quantifying the Intrinsic Strength of C–H⋯O Intermolecular Interactions. Molecules. 2023;28:4478. doi: 10.3390/molecules28114478. PubMed DOI PMC
Sauceda H.E., Vassilev-Galindo V., Chmiela S., Müller K.-R., Tkatchenko A. Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature. Nat. Commun. 2021;12:442. doi: 10.1038/s41467-020-20212-1. PubMed DOI PMC
Igarashi M., Nozawa T., Matsumoto T., Yagihashi F., Kikuchi T., Sato K. Parallel-stacked aromatic molecules in hydrogen-bonded inorganic frameworks. Nat. Commun. 2021;12:7025. doi: 10.1038/s41467-021-27324-2. PubMed DOI PMC
Di S., Wu Q., Shi C., Zhu S. Hydroxy-Containing Covalent Organic Framework Combined with Nickel Ferrite as a Platform for the Recognition and Capture of Bisphenols. ACS Appl. Mater. Interfaces. 2023;15:1827–1842. doi: 10.1021/acsami.2c17728. PubMed DOI
Lao Z., Tang Y., Dong X., Tan Y., Li X., Liu X., Li L., Guo C., Wei G. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides. Nanoscale. 2024;16:4025–4038. doi: 10.1039/D3NR05130G. PubMed DOI
Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Kendall R.A., Dunning T.H., Jr., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Boys S.F., Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI
Czernek J., Brus J., Czerneková V. A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. Int. J. Mol. Sci. 2022;23:15773. doi: 10.3390/ijms232415773. PubMed DOI PMC
Czernek J., Brus J. On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions. Int. J. Mol. Sci. 2023;24:13349. doi: 10.3390/ijms241713349. PubMed DOI PMC
Czernek J., Brus J. Reliable Dimerization Energies for Modeling of Supramolecular Junctions. Int. J. Mol. Sci. 2024;25:602. doi: 10.3390/ijms25010602. PubMed DOI PMC
Podeszwa R., Bukowski R., Szalewicz K. Potential Energy Surface for the Benzene Dimer and Perturbational Analysis of π−π Interactions. J. Phys. Chem. A. 2006;110:10345–10354. doi: 10.1021/jp064095o. PubMed DOI
Tamagawa K., Iijima T., Kimura M. Molecular structure of benzene. J. Mol. Struct. 1976;30:243–253. doi: 10.1016/0022-2860(76)87003-2. DOI
Müller M., Hansen A., Grimme S. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. J. Chem. Phys. 2023;158:014103. doi: 10.1063/5.0133026. PubMed DOI
Gorges J., Bädorf B., Grimme S., Hansen A. Efficient Computation of the Interaction Energies of Very Large Non-covalently Bound Complexes. Synlett. 2023;34:1135–1146. doi: 10.1055/s-0042-1753141. DOI
Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC
Sargent C.T., Kasera R., Glick Z.L., Sherrill C.D., Cheney D.L. A quantitative assessment of deformation energy in intermolecular interactions: How important is it? J. Chem. Phys. 2023;158:244106. doi: 10.1063/5.0155895. PubMed DOI
Scheiner S. Strengthening of Noncovalent Bonds Caused by Internal Deformations. J. Phys. Chem. A. 2024;128:2357–2365. doi: 10.1021/acs.jpca.4c00541. PubMed DOI
Stone A.J. The Theory of Intermolecular Forces. 1st ed. Clarendon Press; Oxford, UK: 2002. pp. 79–102.
Carter-Fenk K., Herbert J.M. Reinterpreting π-stacking. Phys. Chem. Chem. Phys. 2020;22:24870–24886. doi: 10.1039/D0CP05039C. PubMed DOI
Cabaleiro-Lago E.M., Rodríguez-Otero J., Vázquez S.A. Electrostatic penetration effects stand at the heart of aromatic π interactions. Phys. Chem. Chem. Phys. 2022;24:8979–8991. doi: 10.1039/D2CP00714B. PubMed DOI
Vernon R.M., Chong P.A., Tsang B., Kim T.H., Bah A., Farber P., Lin H., Forman-Kay J.D. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife. 2018;7:e31476. doi: 10.7554/eLife.31486. PubMed DOI PMC
Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI
Balasubramani S.G., Chen G.P., Coriani S., Diedenhofen M., Frank M.S., Franzke Y.J., Furche F., Grotjahn R., Harding M.E., Hättig C., et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC
Weigend F., Häser M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997;97:331–340. doi: 10.1007/s002140050269. DOI
Weigend F., Häser M., Patzelt H., Ahlrichs R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998;294:143–152. doi: 10.1016/S0009-2614(98)00862-8. DOI
Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI
Heßelmann A., Jansen G. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005;122:014103. doi: 10.1063/1.1824898. PubMed DOI
Czernek J., Brus J., Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J. Chem. Phys. 2022;156:204303. doi: 10.1063/5.0093557. PubMed DOI
Heßelmann A., Jansen G. First-order intermolecular interaction energies from Kohn–Sham orbitals. Chem. Phys. Lett. 2002;357:464–470. doi: 10.1016/S0009-2614(02)00538-9. DOI
Heßelmann A., Jansen G. Intermolecular dispersion energies from time-dependent density functional theory. Chem. Phys. Lett. 2003;367:778–784. doi: 10.1016/S0009-2614(02)01796-7. DOI
Heßelmann A., Jansen G. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chem. Phys. Lett. 2002;362:319–325. doi: 10.1016/S0009-2614(02)01097-7. DOI
Moszynski R., Heijmen T.G.A., Jeziorski B. Symmetry-adapted perturbation theory for the calculation of Hartree–Fock interaction energies. Mol. Phys. 1996;88:741–758. doi: 10.1080/00268979650026262. DOI
Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16; Revision C.01. Gaussian, Inc.; Wallingford, CT, USA: 2019.
Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. DOI
ORCA4wB97X-3c A Fortran Script for Setting Up a ωB97X-3c Calculation with ORCA 5.0.3 or Higher. [(accessed on 28 June 2024)]. Available online: https://github.com/grimme-lab/ORCA4wB97X-3c.
Bende A., Farcaş A.-A. Intermolecular-Type Conical Intersections in Benzene Dimer. Int. J. Mol. Sci. 2023;24:2906. doi: 10.3390/ijms24032906. PubMed DOI PMC
Pham H.Q., Ouyang R.S., Lv D.S. Scalable Quantum Monte Carlo with Direct-Product Trial Wave Functions. J. Chem. Theory Comput. 2024;20:3524–3534. doi: 10.1021/acs.jctc.3c00769. PubMed DOI
Vinod V., Kleinekathöfer U., Zaspel P. Optimized multifidelity machine learning for quantum chemistry. Mach. Learn. Sci. Technol. 2024;5:015054. doi: 10.1088/2632-2153/ad2cef. DOI
On the Potential Energy Surface of the Pyrene Dimer