Seasonal Dynamics in the Chemistry and Structure of the Fat Bodies of Bumblebee Queens
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26559946
PubMed Central
PMC4641598
DOI
10.1371/journal.pone.0142261
PII: PONE-D-15-22265
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- fyziologická adaptace fyziologie MeSH
- hibernace MeSH
- mastné kyseliny metabolismus MeSH
- roční období * MeSH
- tukové těleso metabolismus MeSH
- včely fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mastné kyseliny MeSH
Insects' fat bodies are responsible for nutrient storage and for a significant part of intermediary metabolism. Thus, it can be expected that the structure and content of the fat body will adaptively change, if an insect is going through different life stages. Bumblebee queens belong to such insects as they dramatically change their physiology several times over their lives in relation to their solitary overwintering, independent colony foundation stage, and during the colony life-cycle ending in the senescent stage. Here, we report on changes in the ultrastructure and lipid composition of the peripheral fat body of Bombus terrestris queens in relation to seasonal changes in the queens' activity. Six life stages are defined and evaluated in particular: pharate, callow, before and after hibernation, egg-laying, and senescence. Transmission electron microscopy revealed that the fat body contained two main cell types-adipocytes and oenocytes. Only adipocytes reveal important changes related to the life phase, and mostly the ration between inclusion and cytoplasm volume varies among particular stages. Both electron microscopy and chemical analyses of lipids highlighted seasonal variability in the quantity of the stored lipids, which peaked prior to hibernation. Triacylglycerols appeared to be the main energy source during hibernation, while the amount of glycogen before and after hibernation remained unchanged. In addition, we observed that the representation of some fatty acids within the triacylglycerols change during the queen's life. Last but not least, we show that fat body cell membranes do not undergo substantial changes concerning phospholipid composition in relation to overwintering. This finding supports the hypothesis that the cold-adaptation strategy of bumblebee queens is more likely to be based on polyol accumulation than on the restructuring of lipid membranes.
Agricultural Research Ltd Troubsko Czech Republic
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Buchmann SL, Hurley JP. A biophysical model for buzz pollination in angiosperms. J Theor Biol. 1978; 72:639–657. PubMed
Banda HJ, Paxon RJ. Pollination of greenhouse tomatoes by bees. Acta Hortic 1991; 288:194–198.
Sladen FWL. The bumblebee. London: Mac Millan; 1912.
Schmid-Hempel R, Schmid-Hempel P. Female mating frequency in Bombus ssp from Central Europe. Insectes Soc. 2000; 47:36–41.
Šobotník J, Kalinová B, Cahlíková L, Weyda F, Ptáček V, Valterová I. Age-dependent changes in structure and function of the male labial gland in Bombus terrestris . J Insect Physiol. 2008; 54:204–214. PubMed
Žáček P, Kalinová B, Šobotník J, Hovorka O, Ptáček V, Coppée A, et al. Comparison of age-dependent quantitative changes in the male labial gland secretion of Bombus terrestris and Bombus lucorum . J Chem Ecol. 2009; 35:698–705. 10.1007/s10886-009-9650-4 PubMed DOI
Coppée A, Mathy T, Cammaerts M-C, Verheggen F, Terzo M, Iserbyt S, et al. Age-dependent attractivity of males’ sexual pheromones in Bombus terrestris (L) [Hymenoptera, Apidae]. Chemoecology. 2011; 21:75–82.
Alford DV. A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in Southern England. J Anim Ecol. 1969; 38:149–170.
Holm SV. Weight and life length of hibernating bumblebee queens (Hymenoptera: Bombidae) under controlled conditions. Entomologica Scandinavica. 1972; 3:313–320.
Fliszkiewicz M, Wilkaniec Z. Fatty acids and amino acids in the fat body of bumblebee Bombus terrestris (L) in diapausing and non-diapausing queens. J Apic Sci. 2007; 51:55–63.
Duchateau MJ, Velthuis HHW. Development and reproductive strategies in Bombus terrestris colonies. Behaviour. 1988; 107:186–207.
Röseler P-F, Röseler I. Caste specific differences in fat body glycogen metabolism of the bumblebee, Bombus terrestris . Insect Biochemistry. 1986; 16:501–508.
Cvačka J, Hovorka O, Jiroš P, Kindl J, Stránský K, Valterová I. Analysis of triacylglycerols in fat body of bumblebees by chromatographic methods. J Chromatogr A. 2006; 1101:226–237. PubMed
Cvačka J, Kofroňová E, Vašíčková S, Stránský K, Jiroš P, Hovorka O, et al. Unusual fatty acids in the fat body of the early bumblebee Bombus pratorum . Lipids. 2008; 43:441–450. 10.1007/s11745-008-3174-5 PubMed DOI
Jiroš P, Cvačka J, Hanus R, Kindl J, Kofroňová E, Valterová I. Changes in composition of triacylglycerols in the fat body of bumblebee males during their lifetime. Lipids. 2011; 46:863–871. 10.1007/s11745-011-3581-x PubMed DOI
Harwood JL, Jones LA, Perry HJ, Rutter AJ, Smith KL, Williams M. Changes in plant lipids during temperature adaptation In: Cossins AR, Ed. Temperature Adaptation of Biological Membranes. London and Chapel Hill: Portland Press; 1994. pp. 107–118.
Košťál V, Tollarová M, Šula J. Adjustments of the enzymatic complement for polyol biosynthesis and accumulation in diapausing cold-acclimated adults of Pyrrhocoris apterus . J Insect Physiol. 2004; 50:303–313. PubMed
Košťál V, Tamura M, Tollarová M, Zahradníčková H. Enzymatic capacity for accumulation of polyol cryoprotectants changes during diapauses development in the adult red firebug, Pyrrhocoris apterus . Physiol Entomol. 2004; 29:344–355.
Tomčala A, Tollarová M, Overgaard J, Šimek P, Košťál V. Seasonal acquisition of chill tolerance and restructuring of membrane glycerophospholipids in an overwintering insect: triggering by low temperature, desiccation and diapause progression. J Exp Biol. 2006; 209:4102–4114. PubMed
Ptáček V. Základy hromadného chovu čmeláka zemního (Bombus terrestris L.) a jeho využití k opylování Uplatněná certifikovaná metodika 12/10. VÚP a ZV Troubsko; 2010. pp. 34 In Czech.
Kofroňová E, Cvačka J, Jiroš P, Sýkora D, Valterová I. Analysis of insect triacylglycerols using liquid chromatography—atmospheric pressure chemical ionization mass spectrometry. Eur J Lipid Sci Technol. 2009; 111:519–525.
Šobotník J, Weyda F, Hanus R, Cvačka J, Nebesářová J. Fat body of Prorhinotermes simplex (Isoptera: Rhinotermitidae): Ultrastructure, inter-caste differences and lipid composition. Micron. 2006; 37:648–656. PubMed
Alford DV. Studies on the fat-body of adult bumblebees. J Apic Res. 1969; 8:37–48.
Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA. Fat metabolism in insects. Ann Rev Nutr. 2001; 21:23–46. PubMed
Burmester T. Evolution and function of insect hexamerins. Eur J Entomol. 1999; 96:213–225.
Jensen PV, Børgesen LW. Regional and functional differentiation in the fat body of pharaoh's ant queens, Monomorium pharaonis (L.). Arthropod Struc Dev. 2000; 29:171–184. PubMed
Haunerland NH, Shirk PD. Regional and functional differentiation in the insect fat body. Ann Rev Entomol. 1995; 40:121–145.
Martin SJ, Carruthers JM, Williams PH, Drijfhout FP. Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J Chem Ecol. 2010; 36:855–863. 10.1007/s10886-010-9805-3 PubMed DOI
Danks SM, Tribe MA. Biochemical changes in blowfly flight muscle mitochondria following temperature acclimation. J Therm Biol. 1979; 4:183–195.
Benett VA, Pruitt NL, Lee RE Jr. Seasonal changes in fatty acid composition associated with cold-hardening in third instar larvae of Eurosta solidaginis . J Comp Physiol B. 1997; 167:249–255.
Košťál V, Šimek P. Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. J Comp Physiol B. 1998; 168:453–460.
Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M. Fatty acid in insects: Composition, metabolism, and biological significance. Arch Insect Biochem Physiol. 1988; 9:1–33.
Tomčala A, Bártů I, Šimek P, Kodrík D. Locust adipokinetic hormones mobilize diacylglycerols selectively. Comp Biochem Physiol B. 2010; 156:26–32. 10.1016/j.cbpb.2010.01.015 PubMed DOI
Downer GHR. Functional role of lipids insects In: Rockstein M, editor. Biochemistry of insects. London: Academic press; 1978. pp. 58–91.
Beenakkers AMT, Van der Horst DJ, Van Marrewijk WJA. Insects lipids and lipoproteins, and their role in physiological processes. Prog Lipid Res. 1985; 24:19–67. PubMed
Hahn DA, Denlinger DL. Energetics of Insect Diapause. Annu Rev Entomol. 2011; 56:103–121. 10.1146/annurev-ento-112408-085436 PubMed DOI
Vesterlund SR, Lilley TM, van Ooik T, Sorvari J. The effect of overwintering temperature on the body energy reserves and phenoloxidase activity of bumblebee Bombus lucorum queens. Insectes Soc. 2014; 61:265–272.
Storey KB, Storey JM. Biochemistry of cryoprotectants In: Denlinger DL, Lees RE, editors. Insect at low temperature. New York: Chapman and Hall Press; 1991. pp. 64–93.
Storey JM, Storey KB. Winter survival of the gall fly larva, Eurosta solidaginis: Profiles of fuel reserves and cryoprotectants in a natural population. J Insect Physiol. 1986; 32:549–556.