• This record comes from PubMed

Quantifying the Intrinsic Strength of C-H⋯O Intermolecular Interactions

. 2023 May 31 ; 28 (11) : . [epub] 20230531

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
GA 22-03187S Czech Science Foundation

It has been recognized that the C-H⋯O structural motif can be present in destabilizing as well as highly stabilizing intermolecular environments. Thus, it should be of interest to describe the strength of the C-H⋯O hydrogen bond for constant structural factors so that this intrinsic strength can be quantified and compared to other types of interactions. This description is provided here for C2h-symmetric dimers of acrylic acid by means of the calculations that employ the coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)] together with an extrapolation to the complete basis set (CBS) limit. Dimers featuring the C-H⋯O and O-H⋯O hydrogens bonds are carefully investigated in a wide range of intermolecular separations by the CCSD(T)/CBS approach, and also by the symmetry-adapted perturbation theory (SAPT) method, which is based on the density-functional theory (DFT) treatment of monomers. While the nature of these two types of hydrogen bonding is very similar according to the SAPT-DFT/CBS calculations and on the basis of a comparison of the intermolecular potential curves, the intrinsic strength of the C-H⋯O interaction is found to be about a quarter of its O-H⋯O counterpart that is less than one might anticipate.

See more in PubMed

Arunan E., Desiraju G.R., Klein R.A., Sadlej J., Scheiner S., Alkorta I., Clary D.C., Crabtree R.H., Dannenberg J.J., Hobza P., et al. Definition of the hydrogen bond. Pure Appl. Chem. 2011;83:1637–1641. doi: 10.1351/PAC-REC-10-01-02. DOI

Schneider H.J. Noncovalent interactions: A brief account of a long history. J. Phys. Org. Chem. 2022;35:e4340. doi: 10.1002/poc.4340. DOI

Vennelakanti V., Qi H.W., Mehmood R., Kulik H.J. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem. Sci. 2021;12:1147–1162. doi: 10.1039/D0SC05084A. PubMed DOI PMC

Jabłoński M. Hydrogen Bonds. Molecules. 2023;28:1616. doi: 10.3390/molecules28041616. PubMed DOI PMC

Joseph J., Jemmis E.D. Red-, Blue- or No-Shift in Hydrogen Bonds: A Unified Explanation. J. Am. Chem. Soc. 2007;129:4620–4632. doi: 10.1021/ja067545z. PubMed DOI

Taylor R. Identifying intermolecular atom⋯atom interactions that are not just bonding but also competitive. CrystEngComm. 2020;22:7145–7151. doi: 10.1039/D0CE00270D. DOI

Newberry R.W., Raines R.T. Secondary Forces in Protein Folding. ACS Chem. Biol. 2019;14:1677–1686. doi: 10.1021/acschembio.9b00339. PubMed DOI PMC

Galle Kankanamge S.R., Ma J., Mackin R.T., Leonik F.M., Taylor C.M., Rubtsov I.V., Kuroda D.G. Proving and Probing the Presence of the Elusive C−H⋯O Hydrogen Bond in Liquid Solutions at Room Temperature. Angew. Chem. 2020;59:17012–17017. doi: 10.1002/anie.202006210. PubMed DOI

Mineva T., Dib E., Gaje A., Petitjean H., Bantignies J.L., Alonso B. Zeolite Structure Direction: Identification, Strength and Involvement of Weak CH⋯O Hydrogen Bonds. ChemPhysChem. 2020;21:149–153. doi: 10.1002/cphc.201900953. PubMed DOI

Pullanchery S., Kulik S., Rehl B., Hassanali A., Roke S. Charge transfer across C–H⋯O hydrogen bonds stabilizes oil droplets in water. Science. 2021;374:1366–1370. doi: 10.1126/science.abj3007. PubMed DOI

Itoh Y., Nakashima Y., Tsukamoto S., Kurohara T., Suzuki M., Sakae Y., Oda M., Okamoto Y., Suzuki T. N+–C–H⋯O Hydrogen bonds in protein-ligand complexes. Sci. Rep. 2019;9:767. doi: 10.1038/s41598-018-36987-9. PubMed DOI PMC

Brus J., Urbanova M., Czernek J., Pavelkova M., Kubova K., Vyslouzil J., Abbrent S., Konefal R., Horsky J., Vetchy D., et al. Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. Biomacromolecules. 2017;18:2478–2488. doi: 10.1021/acs.biomac.7b00627. PubMed DOI

Liu P., Wang H., Zeng H., Hong X., Huang F. A [15]paracyclophenone and its fluorenone-containing derivatives: Syntheses and binding to nerve agents mimics via aryl-CH hydrogen bonding interactions. Org. Chem. Front. 2021;8:25–31. doi: 10.1039/D0QO00456A. DOI

Gu Y., Kar T., Scheiner S. Fundamental Properties of the CH⋯O Interaction:   Is It a True Hydrogen Bond? J. Am. Chem. Soc. 1999;121:9411–9422. doi: 10.1021/ja991795g. DOI

Kar T., Scheiner S. Comparison of Cooperativity in CH⋯O and OH⋯O Hydrogen Bonds. J. Phys. Chem. A. 2004;108:9161–9168. doi: 10.1021/jp048546l. DOI

Moore K.B., Sadeghian K., Sherrill C.D., Ochsenfeld C., Schaefer H.F. C–H⋯O Hydrogen Bonding. The Prototypical Methane-Formaldehyde System: A Critical Assessment. J. Chem. Theory Comput. 2017;13:5379–5395. doi: 10.1021/acs.jctc.7b00753. PubMed DOI

Mao Y., Head-Gordon M. Probing Blue-Shifting Hydrogen Bonds with Adiabatic Energy Decomposition Analysis. J. Phys. Chem. Lett. 2019;10:3899–3905. doi: 10.1021/acs.jpclett.9b01203. PubMed DOI

Yates J.R., Pham T.N., Pickard C.J., Mauri F., Amado A.M., Gil A.M., Brown S.P. An Investigation of Weak CH⋯O Hydrogen Bonds in Maltose Anomers by a Combination of Calculation and Experimental Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2005;127:10216–10220. doi: 10.1021/ja051019a. PubMed DOI

Moggach S.A., Marshall W.G., Rogers D.M., Parsons S. How focussing on hydrogen bonding interactions in amino acids can miss the bigger picture: A high pressure neutron powder diffraction study of ε-glycine. CrystEngComm. 2015;17:5315–5328. doi: 10.1039/C5CE00327J. DOI

Calvin J.A., Peng C., Rishi V., Kumar A., Valeev E.F. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021;121:1203–1231. doi: 10.1021/acs.chemrev.0c00006. PubMed DOI

Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020;10:e1452. doi: 10.1002/wcms.1452. DOI

Shahbaz M., Szalewicz K. Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions. Theor. Chem. Acc. 2019;138:25. doi: 10.1007/s00214-019-2414-5. DOI

Bartalucci E., Malär A.A., Mehnert A., Büning J.B.K., Günzel L., Icker M., Börner M., Wiebeler C., Meier B.H., Grimme S., et al. Probing a Hydrogen-π Interaction Involving a Trapped Water Molecule in the Solid State. Angew. Chem. Int. Ed. 2023;62:e2022117725. doi: 10.1002/anie.202217725. PubMed DOI

Czernek J., Brus J., Czerneková V. A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. Int. J. Mol. Sci. 2022;23:15773. doi: 10.3390/ijms232415773. PubMed DOI PMC

Jurečka P., Šponer J., Černý J., Hobza P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 2006;8:1985–1993. doi: 10.1039/B600027D. PubMed DOI

Marshall M.S., Burns L.A., Sherrill C.D. Basis set convergence of the coupled-cluster correction: Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. J. Chem. Phys. 2011;135:194102. doi: 10.1063/1.3659142. PubMed DOI

Li X., Spada L., Alessandrini S., Zheng Y., Lengsfeld K.G., Grabow J.-U., Feng G., Puzzarini C., Barone V. Stacked but not Stuck: Unveiling the Role of π→π* Interactions with the Help of the Benzofuran–Formaldehyde Complex. Angew. Chem. Int. Ed. 2022;61:264–270. doi: 10.1002/anie.202113737. PubMed DOI PMC

Souza de G.L.C., Peterson K.A. Probing the ionization potentials of the formaldehyde dimer. J. Chem. Phys. 2020;152:194305. doi: 10.1063/5.0009658. PubMed DOI

Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007. doi: 10.1063/1.456153. DOI

Kendall R.A., Dunning T.H., Jr. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796. doi: 10.1063/1.462569. DOI

Alessandrini S., Barone V., Puzzarini C. Extension of the “Cheap” Composite Approach to Noncovalent Interactions: The jun-ChS Scheme. J. Chem. Theory Comput. 2020;16:988–1006. doi: 10.1021/acs.jctc.9b01037. PubMed DOI

Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006;124:034108. doi: 10.1063/1.2148954. PubMed DOI

Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Rappoport D., Furche F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI

Czernek J., Brus J., Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J. Chem. Phys. 2022;156:204303. doi: 10.1063/5.0093557. PubMed DOI

Dornshuld E.V., Holy C.M., Tschumper G.S. Homogeneous and Heterogeneous Noncovalent Dimers of Formaldehyde and Thioformaldehyde: Structures, Energetics, and Vibrational Frequencies. J. Phys. Chem. A. 2014;118:3376–3385. doi: 10.1021/jp502588h. PubMed DOI

Andersen J., Voute A., Mihrin D., Heimdal J., Berg R.W., Torsson M., Larsen Wugt R. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen. J. Chem. Phys. 2017;146:244311. doi: 10.1063/1.4990042. PubMed DOI

Gavezzotti A. Molecular Aggregation: Structure Analysis and Molecular Simulation of Crystals and Liquids. 1st ed. Oxford University Press; Oxford, UK: 2007. pp. 304–329.

Jabłoński M., Monaco G. Different Zeroes of Interaction Energies As the Cause of Opposite Results on the Stabilizing Nature of C−H⋯O Intramolecular Interactions. J. Chem. Inf. Model. 2013;53:1661–1675. doi: 10.1021/ci400085t. PubMed DOI

Jabłoński M. A Critical Overview of Current Theoretical Methods of Estimating the Energy of Intramolecular Interactions. Molecules. 2020;25:5512. doi: 10.3390/molecules25235512. PubMed DOI PMC

Becucci M., Melandri S. High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules. Chem. Rev. 2016;116:5014–5037. doi: 10.1021/acs.chemrev.5b00512. PubMed DOI

Feng G., Favero L.B., Maris A., Vigorito A., Caminati W., Meyer R. Proton Transfer in Homodimers of Carboxylic Acids: The Rotational Spectrum of the Dimer of Acrylic Acid. J. Am. Chem. Soc. 2012;134:19281–19286. doi: 10.1021/ja309627m. PubMed DOI

Boese R., Bläser D., Steller I., Latz R., Bäumen A. Redetermination of 2-propenoic acid at 125K. Acta Crystallogr. Sect. C. 1999;55:IUC9900006. doi: 10.1107/S0108270199099850. DOI

Das A.K., Urban L., Leven I., Loipersberger M., Aldossary A., Head-Gordon M., Head-Gordon T. Development of an Advanced Force Field for Water Using Variational Energy Decomposition Analysis. J. Chem. Theory Comput. 2019;15:5001–5013. doi: 10.1021/acs.jctc.9b00478. PubMed DOI

Carter-Fenk C., Lao K.U., Herbert J.M. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Acc. Chem. Res. 2021;54:3679–3690. doi: 10.1021/acs.accounts.1c00387. PubMed DOI

Hopffgarten M.v., Frenking G. Energy Decomposition Analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012;2:43–62. doi: 10.1002/wcms.71. DOI

Mo Y., Bao P., Gao J. Energy Decomposition Analysis Based on a Block-Localized Wavefunction and Multistate Density Functional Theory. Phys. Chem. Chem. Phys. 2011;13:6760–6775. doi: 10.1039/c0cp02206c. PubMed DOI PMC

Chen X., Gao J. Fragment Exchange Potential for Realizing Pauli Deformation of Inter-Fragment Interactions. J. Phys. Chem. Lett. 2020;11:4008–4016. doi: 10.1021/acs.jpclett.0c00933. PubMed DOI

Stone A.J. The Theory of Intermolecular Forces. 1st ed. Clarendon Press; Oxford, UK: 2002. pp. 79–102.

Heßelmann A., Jansen G., Schütz M. Interaction Energy Contributions of H-Bonded and Stacked Structures of the AT and GC DNA Base Pairs from the Combined Density Functional Theory and Intermolecular Perturbation Theory Approach. J. Am. Chem. Soc. 2006;128:11730–11731. doi: 10.1021/ja0633363. PubMed DOI

Moszynski R., Heijmen T.G.A., Jeziorski B. Symmetry-adapted perturbation theory for the calculation of Hartree–Fock interaction energies. Mol. Phys. 1996;88:741–758. doi: 10.1080/00268979650026262. DOI

Řezáč J., Hobza P. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016;116:5038–5071. doi: 10.1021/acs.chemrev.5b00526. PubMed DOI

Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC

AMS 2023.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. [(accessed on 26 May 2023)]. Available online: http://www.scm.com.

Bickelhaupt F.M., Baerends E.J. Kohn–Sham Density Functional Theory: Predicting and Understanding Chemistry. In: Lipkowitz K.B., Boyd D.B., editors. Reviews in Computational Chemistry. 1st ed. Volume 15. Wiley; Hoboken, NJ, USA: 2009. pp. 1–86. DOI

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648. doi: 10.1063/1.464913. DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI

Lenthe van E., Baerends E.J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 2003;24:1142–1156. doi: 10.1002/jcc.10255. PubMed DOI

Fiedler J., Berland K., Borchert J.W., Corkery R.W., Eisfeld A., Gelbwaser-Klimovsky D., Greve M.M., Holst B., Jacobs K., Krüger M., et al. Perspectives on weak interactions in complex materials at different length scales. Phys. Chem. Chem. Phys. 2023;25:2671–2705. doi: 10.1039/D2CP03349F. PubMed DOI

Southern S.A., Bryce D.L. To what extent do bond length and angle govern the 13C and 1H NMR response to weak CH⋯O hydrogen bonds? A case study of caffeine and theophylline cocrystals. Solid State Nucl. Magn. Reson. 2022;119:101796. doi: 10.1016/j.ssnmr.2022.101795. PubMed DOI

Lo Presti L., Soave R., Destro R. On the interplay between CH⋯O and OH⋯O interactions in determining crystal packing and molecular conformation: An experimental and theoretical charge density study of the fungal secondary metabolite austdiol (C12H12O5) J. Phys. Chem. B. 2006;110:640–6414. doi: 10.1021/jp056823y. PubMed DOI

Czernek J., Brus J. Polymorphic Forms of Valinomycin Investigated by NMR Crystallography. Int. J. Mol. Sci. 2020;21:4907. doi: 10.3390/ijms21144907. PubMed DOI PMC

Cuellar J., Parada-Díaz L., Garza J., Mejía S.M. A Theoretical Analysis of Interaction Energies and Intermolecular Interactions between Amphotericin B and Potential Bioconjugates Used in the Modification of Nanocarriers for Drug Delivery. Molecules. 2023;28:2674. doi: 10.3390/molecules28062674. PubMed DOI PMC

Gress M.E., Jeffrey G.A. A Neutron Diffraction Refinement of the Crystal Structure of β-Maltose Monohydrate. Acta Cryst. B. 1977;33:2490–2495. doi: 10.1107/S0567740877008772. DOI

Verbist J.J., Lehman M.S., Koetzle T.F., Hamilton W.C. Precision neutron diffraction structure determination of protein and nucleic acid components. VI. The crystal and molecular structure of the amino acid l-asparagine monohydrate. Acta Cryst. B. 1972;28:3006–3013. doi: 10.1107/S0567740872007368. DOI

Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT, USA: 2019.

Weigend F., Häser M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997;97:331–340. doi: 10.1007/s002140050269. DOI

Weigend F., Häser M., Patzelt H., Ahlrichs R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998;294:143–152. doi: 10.1016/S0009-2614(98)00862-8. DOI

Balasubramani S.G., Chen G.P., Coriani S., Diedenhofen M., Frank M.S., Franzke Y.J., Furche F., Grotjahn R., Harding M.E., Hättig C., et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC

Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI

Heßelmann A., Jansen G. First-order intermolecular interaction energies from Kohn–Sham orbitals. Chem. Phys. Lett. 2002;357:464–470. doi: 10.1016/S0009-2614(02)00538-9. DOI

Heßelmann A., Jansen G. Intermolecular dispersion energies from time-dependent density functional theory. Chem. Phys. Lett. 2003;367:778–784. doi: 10.1016/S0009-2614(02)01796-7. DOI

Heßelmann A., Jansen G. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chem. Phys. Lett. 2002;362:319–325. doi: 10.1016/S0009-2614(02)01097-7. DOI

Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI

Riplinger C., Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138:034106. doi: 10.1063/1.4773581. PubMed DOI

Riplinger C., Sandhoefer B., Hansen A., Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139:134101. doi: 10.1063/1.4821834. PubMed DOI

Riplinger C., Pinski P., Becker U., Valeev E.F., Neese F. Sparse maps–A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI

Pinski P., Riplinger C., Valeev E.F., Neese F. Sparse maps–A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 2015;143:034108. doi: 10.1063/1.4926879. PubMed DOI

Neese F. Software update: The ORCA program system–Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. DOI

Scheiner S., Kar T., Gu Y. Strength of the CαH··O Hydrogen Bond of Amino Acid Residues. J. Biol. Chem. 2001;276:9832–9837. doi: 10.1074/jbc.M010770200. PubMed DOI

Puzzarini C., Spada L., Alessandrini S., Barone V. The challenge of non-covalent interactions: Theory meets experiment for reconciling accuracy and interpretation. J. Phys. Condens. Matter. 2020;32:343002. doi: 10.1088/1361-648X/ab8253. PubMed DOI

Civiš S., Lamanec M., Špirko V., Kubišta J., Špeťko M., Hobza P. Hydrogen Bonding with Hydridic Hydrogen–Experimental Low-Temperature IR and Computational Study: Is a Revised Definition of Hydrogen Bonding Appropriate? J. Am. Chem. Soc. 2023;145:8550–8559. doi: 10.1021/jacs.3c00802. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...