Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články
PubMed
34951387
PubMed Central
PMC9886822
DOI
10.2174/1570159x20666211223130228
PII: CN-EPUB-119655
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, Central nervous system, SARS-CoV-2, anxiety, brain fog, cognitive impairment, depression, long COVID, microglia, mitochondria, neuroinflammation, neuropsychiatric disease,
- MeSH
- centrální nervový systém MeSH
- COVID-19 * komplikace MeSH
- lidé MeSH
- neurodegenerativní nemoci * MeSH
- pandemie MeSH
- progrese nemoci MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The incidence of infections from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent for coronavirus disease 2019 (COVID-19), has dramatically escalated following the initial outbreak in China, in late 2019, resulting in a global pandemic with millions of deaths. Although the majority of infected patients survive, and the rapid advent and deployment of vaccines have afforded increased immunity against SARS-CoV-2, long-term sequelae of SARS-CoV-2 infection have become increasingly recognized. These include, but are not limited to, chronic pulmonary disease, cardiovascular disorders, and proinflammatory-associated neurological dysfunction that may lead to psychological and neurocognitive impairment. A major component of cognitive dysfunction is operationally categorized as "brain fog" which comprises difficulty concentrating, forgetfulness, confusion, depression, and fatigue. Multiple parameters associated with long-term neuropsychiatric sequelae of SARS-CoV-2 infection have been detailed in clinical studies. Empirically elucidated mechanisms associated with the neuropsychiatric manifestations of COVID-19 are by nature complex, but broad-based working models have focused on mitochondrial dysregulation, leading to systemic reductions of metabolic activity and cellular bioenergetics within the CNS structures. Multiple factors underlying the expression of brain fog may facilitate future pathogenic insults, leading to repetitive cycles of viral and bacterial propagation. Interestingly, diverse neurocognitive sequelae associated with COVID-19 are not dissimilar from those observed in other historical pandemics, thereby providing a broad and integrative perspective on potential common mechanisms of CNS dysfunction subsequent to viral infection. Poor mental health status may be reciprocally linked to compromised immune processes and enhanced susceptibility to infection by diverse pathogens. By extrapolation, we contend that COVID-19 may potentiate the severity of neurological/neurocognitive deficits in patients afflicted by well-studied neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Accordingly, the prevention, diagnosis, and management of sustained neuropsychiatric manifestations of COVID-19 are pivotal health care directives and provide a compelling rationale for careful monitoring of infected patients, as early mitigation efforts may reduce short- and long-term complications.
Department of Psychology University of New York Prague Prague Czech Republic
Department of Surgery Renaissance School of Medicine Stony Brook University Stony Brook NY11794 USA
Zobrazit více v PubMed
Ramos-Casals M., Brito-Zerón P., Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat. Rev. Rheumatol. 2021;17(6):315–332. doi: 10.1038/s41584-021-00608-z. PubMed DOI PMC
Li H., Xiao X., Zhang J., Zafar M.I., Wu C., Long Y., Lu W., Pan F., Meng T., Zhao K., Zhou L., Shen S., Liu L., Liu Q., Xiong C. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine. 2020;28:100604. doi: 10.1016/j.eclinm.2020.100604. PubMed DOI PMC
Singal C.M.S., Jaiswal P., Seth P. SARS-CoV-2, More than a respiratory virus: its potential role in neuropathogenesis. ACS Chem. Neurosci. 2020;11(13):1887–1899. doi: 10.1021/acschemneuro.0c00251. PubMed DOI
Chou S.H., Beghi E., Helbok R., Moro E., Sampson J., Altamirano V., Mainali S., Bassetti C., Suarez J.I., McNett M., GCS-Neuro COVID Consortium and ENERGY Consortium Global incidence of neurological manifestations among patients hospitalized with COVID-19-a report for the GCS-Neuro COVID consortium and the ENERGY consortium. JAMA Netw. Open. 2021;4(5):e2112131. doi: 10.1001/jamanetworkopen.2021.12131. PubMed DOI PMC
Wang F., Kream R.M., Stefano G.B. Long-term respiratory and neurological sequelae of COVID-19. Med. Sci. Monit. 2020;26:e928996. doi: 10.12659/MSM.928996. PubMed DOI PMC
Tong D.M., Zhou Y.T., Wang Y.W. COVID-19-associated acute brain dysfunction related to sepsis. J. Clin. Med. Res. 2021;13(2):82–91. doi: 10.14740/jocmr4437. PubMed DOI PMC
Carfì A., Bernabei R., Landi F., Gemelli Against C-P-A.C.S.G., Gemelli Against COVID-19 Post-Acute Care Study Group Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603–605. doi: 10.1001/jama.2020.12603. PubMed DOI PMC
Correa-Palacio A.F., Hernandez-Huerta D., Gómez-Arnau J., Loeck C., Caballero I. Affective psychosis after COVID-19 infection in a previously healthy patient: a case report. Psychiatry Res. 2020;290:113115. doi: 10.1016/j.psychres.2020.113115. PubMed DOI PMC
Ptacek R., Ptackova H., Martin A., Stefano G.B. Psychiatric manifestations of COVID-19 and their social significance. Med. Sci. Monit. 2020;26:e930340. doi: 10.12659/MSM.930340. PubMed DOI PMC
Epstein D., Andrawis W., Lipsky A.M., Ziad H.A., Matan M. Anxiety and suicidality in a hospitalized patient with COVID-19 infection. Eur. J. Case Rep. Intern. Med. 2020;7(5):001651. doi: 10.12890/2020_001651. PubMed DOI PMC
Mawhinney J.A., Wilcock C., Haboubi H., Roshanzamir S. Neurotropism of SARS-CoV-2: COVID-19 presenting with an acute manic episode. BMJ Case Rep. 2020;13(6):e236123. doi: 10.1136/bcr-2020-236123. PubMed DOI PMC
Stefano G.B. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit. 2021;27:e931447. doi: 10.12659/MSM.931447. PubMed DOI PMC
Maury A., Lyoubi A., Peiffer-Smadja N., de Broucker T., Meppiel E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev. Neurol. (Paris) 2021;177(1-2):51–64. doi: 10.1016/j.neurol.2020.10.001. PubMed DOI PMC
Llorente Ayuso L., Torres Rubio P., Beijinho do Rosário R.F., Giganto Arroyo M.L., Sierra-Hidalgo F. Bickerstaff encephalitis after COVID-19. J. Neurol. 2021;268(6):2035–2037. doi: 10.1007/s00415-020-10201-1. PubMed DOI PMC
Kremer S., Lersy F., de Sèze J., Ferré J.C., Maamar A., Carsin-Nicol B., Collange O., Bonneville F., Adam G., Martin-Blondel G., Rafiq M., Geeraerts T., Delamarre L., Grand S., Krainik A., Caillard S., Constans J.M., Metanbou S., Heintz A., Helms J., Schenck M., Lefèbvre N., Boutet C., Fabre X., Forestier G., de Beaurepaire I., Bornet G., Lacalm A., Oesterlé H., Bolognini F., Messié J., Hmeydia G., Benzakoun J., Oppenheim C., Bapst B., Megdiche I., Henry Feugeas M.C., Khalil A., Gaudemer A., Jager L., Nesser P., Talla Mba Y., Hemmert C., Feuerstein P., Sebag N., Carré S., Alleg M., Lecocq C., Schmitt E., Anxionnat R., Zhu F., Comby P.O., Ricolfi F., Thouant P., Desal H., Boulouis G., Berge J., Kazémi A., Pyatigorskaya N., Lecler A., Saleme S., Edjlali-Goujon M., Kerleroux B., Zorn P.E., Matthieu M., Baloglu S., Ardellier F.D., Willaume T., Brisset J.C., Boulay C., Mutschler V., Hansmann Y., Mertes P.M., Schneider F., Fafi-Kremer S., Ohana M., Meziani F., David J.S., Meyer N., Anheim M., Cotton F. Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology. 2020;297(2):E242–E251. doi: 10.1148/radiol.2020202222. PubMed DOI PMC
Katal S., Balakrishnan S., Gholamrezanezhad A. Neuroimaging and neurologic findings in COVID-19 and other coronavirus infections: A systematic review in 116 patients. J. Neuroradiol. 2021;48(1):43–50. doi: 10.1016/j.neurad.2020.06.007. PubMed DOI PMC
Kremer S., Lersy F., Anheim M., Merdji H., Schenck M., Oesterlé H., Bolognini F., Messie J., Khalil A., Gaudemer A., Carré S., Alleg M., Lecocq C., Schmitt E., Anxionnat R., Zhu F., Jager L., Nesser P., Mba Y.T., Hmeydia G., Benzakoun J., Oppenheim C., Ferré J.C., Maamar A., Carsin-Nicol B., Comby P.O., Ricolfi F., Thouant P., Boutet C., Fabre X., Forestier G., de Beaurepaire I., Bornet G., Desal H., Boulouis G., Berge J., Kazémi A., Pyatigorskaya N., Lecler A., Saleme S., Edjlali-Goujon M., Kerleroux B., Constans J.M., Zorn P.E., Mathieu M., Baloglu S., Ardellier F.D., Willaume T., Brisset J.C., Caillard S., Collange O., Mertes P.M., Schneider F., Fafi-Kremer S., Ohana M., Meziani F., Meyer N., Helms J., Cotton F. Neurologic and neuroimaging findings in patients with COVID-19: A retrospective multicenter study. Neurology. 2020;95(13):e1868–e1882. doi: 10.1212/WNL.0000000000010112. PubMed DOI
Serrano G.E., Walker J.E., Arce R., Glass M.J., Vargas D., Sue L.I., Intorcia A.J., Nelson C.M., Oliver J., Papa J., Russell A., Suszczewicz K.E., Borja C.I., Belden C., Goldfarb D., Shprecher D., Atri A., Adler C.H., Shill H.A., Driver-Dunckley E., Mehta S.H., Readhead B., Huentelman M.J., Peters J.L., Alevritis E., Bimi C., Mizgerd J.P., Reiman E.M., Montine T.J., Desforges M., Zehnder J.L., Sahoo M.K., Zhang H., Solis D., Pinsky B.A., Deture M., Dickson D.W., Beach T.G. Mapping of SARS-CoV-2 brain invasion and histopathology in COVID-19 disease. medRxiv. 2021 doi: 10.1101/2021.02.15.21251511. 2021.02.15.21251511. PubMed DOI PMC
Solomon I.H., Normandin E., Bhattacharyya S., Mukerji S.S., Keller K., Ali A.S., Adams G., Hornick J.L., Padera R.F., Jr, Sabeti P. Neuropathological Features of Covid-19. N. Engl. J. Med. 2020;383(10):989–992. doi: 10.1056/NEJMc2019373. PubMed DOI PMC
Remmelink M., De Mendonça R., D’Haene N., De Clercq S., Verocq C., Lebrun L., Lavis P., Racu M.L., Trépant A.L., Maris C., Rorive S., Goffard J.C., De Witte O., Peluso L., Vincent J.L., Decaestecker C., Taccone F.S., Salmon I. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit. Care. 2020;24(1):495. doi: 10.1186/s13054-020-03218-5. PubMed DOI PMC
Calabrese F., Pezzuto F., Fortarezza F., Hofman P., Kern I., Panizo A., von der Thüsen J., Timofeev S., Gorkiewicz G., Lunardi F. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020;477(3):359–372. doi: 10.1007/s00428-020-02886-6. PubMed DOI PMC
Wu K.K., Chan S.K., Ma T.M. Posttraumatic stress after SARS. Emerg. Infect. Dis. 2005;11(8):1297–1300. doi: 10.3201/eid1108.041083. PubMed DOI PMC
Park H.Y., Park W.B., Lee S.H., Kim J.L., Lee J.J., Lee H., Shin H.S. Posttraumatic stress disorder and depression of survivors 12 months after the outbreak of Middle East respiratory syndrome in South Korea. BMC Public Health. 2020;20(1):605. doi: 10.1186/s12889-020-08726-1. PubMed DOI PMC
Honigsbaum M., Krishnan L. Taking pandemic sequelae seriously: from the Russian influenza to COVID-19 long-haulers. Lancet. 2020;396(10260):1389–1391. doi: 10.1016/S0140-6736(20)32134-6. PubMed DOI PMC
Ravenholt R.T., Foege W.H. 1918 influenza, encephalitis lethargica, parkinsonism. Lancet. 1982;2(8303):860–864. doi: 10.1016/S0140-6736(82)90820-0. PubMed DOI
Reid A.H., McCall S., Henry J.M., Taubenberger J.K. Experimenting on the past: the enigma of von Economo’s encephalitis lethargica. J. Neuropathol. Exp. Neurol. 2001;60(7):663–670. doi: 10.1093/jnen/60.7.663. PubMed DOI
Meals R.W., Hauser V.F., Bower A.G. Poliomyelitis-the Los Angeles epidemic of 1934: part II. Cal. West. Med. 1935;43(3):215–222. PubMed PMC
Meals R.W., Hauser V.F., Bower A.G. Poliomyelitis-the Los Angeles epidemic of 1934 : part I. Cal. West. Med. 1935;43(2):123–125. PubMed PMC
Acheson E.D. The clinical syndrome variously called benign myalgic encephalomyelitis, Iceland disease and epidemic neuromyasthenia. Am. J. Med. 1959;26(4):569–595. doi: 10.1016/0002-9343(59)90280-3. PubMed DOI
Sharpe M.C., Archard L.C., Banatvala J.E., Borysiewicz L.K., Clare A.W., David A., Edwards R.H., Hawton K.E., Lambert H.P., Lane R.J., et al. A report-chronic fatigue syndrome: guidelines for research. J. R. Soc. Med. 1991;84(2):118–121. doi: 10.1177/014107689108400224. PubMed DOI PMC
Vahidy F.S., Pan A.P., Ahnstedt H., Munshi Y., Choi H.A., Tiruneh Y., Nasir K., Kash B.A., Andrieni J.D., McCullough L.D. Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area. PLoS One. 2021;16(1):e0245556. doi: 10.1371/journal.pone.0245556. PubMed DOI PMC
Takahashi T., Ellingson M.K., Wong P., Israelow B., Lucas C., Klein J., Silva J., Mao T., Oh J.E., Tokuyama M., Lu P., Venkataraman A., Park A., Liu F., Meir A., Sun J., Wang E.Y., Casanovas-Massana A., Wyllie A.L., Vogels C.B.F., Earnest R., Lapidus S., Ott I.M., Moore A.J., Shaw A., Fournier J.B., Odio C.D., Farhadian S., Dela Cruz C., Grubaugh N.D., Schulz W.L., Ring A.M., Ko A.I., Omer S.B., Iwasaki A., Iwasaki A., Yale IMPACT Research Team Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588(7837):315–320. doi: 10.1038/s41586-020-2700-3. PubMed DOI PMC
Sudre C.H., Murray B., Varsavsky T., Graham M.S., Penfold R.S., Bowyer R.C., Pujol J.C., Klaser K., Antonelli M., Canas L.S., Molteni E., Modat M., Jorge Cardoso M., May A., Ganesh S., Davies R., Nguyen L.H., Drew D.A., Astley C.M., Joshi A.D., Merino J., Tsereteli N., Fall T., Gomez M.F., Duncan E.L., Menni C., Williams F.M.K., Franks P.W., Chan A.T., Wolf J., Ourselin S., Spector T., Steves C.J. Attributes and predictors of long COVID. Nat. Med. 2021;27(4):626–631. doi: 10.1038/s41591-021-01292-y. PubMed DOI PMC
Desforges M., Le Coupanec A., Dubeau P., Bourgouin A., Lajoie L., Dubé M., Talbot P.J. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12(1):E14. doi: 10.3390/v12010014. PubMed DOI PMC
Arbour N., Day R., Newcombe J., Talbot P.J. Neuroinvasion by human respiratory coronaviruses. J. Virol. 2000;74(19):8913–8921. doi: 10.1128/JVI.74.19.8913-8921.2000. PubMed DOI PMC
Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 2020;16(11):636–644. doi: 10.1038/s41582-020-0398-3. PubMed DOI PMC
Chen R., Wang K., Yu J., Howard D., French L., Chen Z., Wen C., Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front. Neurol. 2021;11:573095. doi: 10.3389/fneur.2020.573095. PubMed DOI PMC
Barrantes F.J. Central nervous system targets and routes for SARS-CoV-2: current views and new hypotheses. ACS Chem. Neurosci. 2020;11(18):2793–2803. doi: 10.1021/acschemneuro.0c00434. PubMed DOI
Stefano M.L., Kream R.M., Stefano G.B. A novel vaccine employing non-replicating rabies virus expressing chimeric SARS-CoV-2 spike protein domains: functional inhibition of viral/nicotinic acetylcholine receptor complexes. . Med. Sci. Monit. 2020;26:e926016. doi: 10.12659/MSM.926016. PubMed DOI PMC
Farsalinos K., Eliopoulos E., Leonidas D.D., Papadopoulos G.E., Tzartos S., Poulas K. Nicotinic cholinergic system and COVID-19: in silico identification of an interaction between SARS-CoV-2 and nicotinic receptors with potential therapeutic targeting implications. Int. J. Mol. Sci. 2020;21(16):E5807. doi: 10.3390/ijms21165807. PubMed DOI PMC
Tsai L.K., Hsieh S.T., Chang Y.C. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol. Taiwan. 2005;14(3):113–119. PubMed
Kanberg N., Ashton N.J., Andersson L.M., Yilmaz A., Lindh M., Nilsson S., Price R.W., Blennow K., Zetterberg H., Gisslén M. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology. 2020;95(12):e1754–e1759. doi: 10.1212/WNL.0000000000010111. PubMed DOI
Yang A.C., Kern F., Losada P.M., Agam M.R., Maat C.A., Schmartz G.P., Fehlmann T., Stein J.A., Schaum N., Lee D.P., Calcuttawala K., Vest R.T., Berdnik D., Lu N., Hahn O., Gate D., McNerney M.W., Channappa D., Cobos I., Ludwig N., Schulz-Schaeffer W.J., Keller A., Wyss-Coray T. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–571. doi: 10.1038/s41586-021-03710-0. PubMed DOI PMC
Bilinska K., Jakubowska P., Von Bartheld C.S., Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci. 2020;11(11):1555–1562. doi: 10.1021/acschemneuro.0c00210. PubMed DOI PMC
Ding Y., Wang H., Shen H., Li Z., Geng J., Han H., Cai J., Li X., Kang W., Weng D., Lu Y., Wu D., He L., Yao K. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol. 2003;200(3):282–289. doi: 10.1002/path.1440. PubMed DOI PMC
Esch T., Stefano G.B., Ptacek R., Kream R.M. Emerging roles of blood-borne intact and respiring mitochondria as bidirectional mediators of pro- and anti-inflammatory processes. Med. Sci. Monit. 2020;26:e924337. doi: 10.12659/MSM.924337. PubMed DOI PMC
Li Z., Okamoto K., Hayashi Y., Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004;119(6):873–887. doi: 10.1016/j.cell.2004.11.003. PubMed DOI
Ulland T.K., Song W.M., Huang S.C., Ulrich J.D., Sergushichev A., Beatty W.L., Loboda A.A., Zhou Y., Cairns N.J., Kambal A., Loginicheva E., Gilfillan S., Cella M., Virgin H.W., Unanue E.R., Wang Y., Artyomov M.N., Holtzman D.M., Colonna M. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell. 2017;170(4):649–663.e13. doi: 10.1016/j.cell.2017.07.023. PubMed DOI PMC
Krupovic M., Dolja V.V., Koonin E.V. The LUCA and its complex virome. Nat. Rev. Microbiol. 2020;18(11):661–670. doi: 10.1038/s41579-020-0408-x. PubMed DOI
Krupovic M., Dolja V.V., Koonin E.V. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 2019;17(7):449–458. doi: 10.1038/s41579-019-0205-6. PubMed DOI
Wu K.E., Fazal F.M., Parker K.R., Zou J., Chang H.Y. RNA-GPS predicts SARS-CoV-2 RNA residency to host mitochondria and nucleolus. Cell Syst. 2020;11(1):102–108.e3. doi: 10.1016/j.cels.2020.06.008. PubMed DOI PMC
Stefano G.B., Büttiker P., Weissenberger S., Martin A., Ptacek R., Kream R.M. Editorial: the pathogenesis of long-term neuropsychiatric COVID-19 and the role of microglia, mitochondria, and persistent neuroinflammation: a hypothesis. Med. Sci. Monit. 2021;27:e933015. doi: 10.12659/MSM.933015. PubMed DOI PMC
Stefano G.B., Kream R.M. Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 neurological disorders. Cell. Mol. Neurobiol. 2021 doi: 10.1007/s10571-021-01117-z. PubMed DOI PMC
Singh K.K., Chaubey G., Chen J.Y., Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 2020;319(2):C258–C267. doi: 10.1152/ajpcell.00224.2020. PubMed DOI PMC
Dutta S., Das N., Mukherjee P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA viruses. Front. Microbiol. 2020;11:1990. doi: 10.3389/fmicb.2020.01990. PubMed DOI PMC
Elesela S., Lukacs N.W. Role of mitochondria in viral infections. Life (Basel) 2021;11(3):232. doi: 10.3390/life11030232. PubMed DOI PMC
Stefano G.B., Esch T., Ptacek R., Kream R.M. Dysregulation of nitric oxide signaling in microglia: multiple points of functional convergence in the complex pathophysiology of alzheimer’s disease. Med. Sci. Monit. doi: 10.12659/MSM.927739. In press. PubMed DOI PMC
Cheng J., Dong Y., Ma J., Pan R., Liao Y., Kong X., Li X., Li S., Chen P., Wang L., Yu Y., Yuan Z. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci. Adv. 2021;7(35):eabe3600. doi: 10.1126/sciadv.abe3600. PubMed DOI PMC
Stefano G.B., Bilfinger T.V., Fricchione G.L. The immune-neuro-link and the macrophage: postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog. Neurobiol. 1994;42(4):475–488. doi: 10.1016/0301-0082(94)90048-5. PubMed DOI
Shojaei S., Suresh M., Klionsky D.J., Labouta H.I., Ghavami S. Autophagy and SARS-CoV-2 infection: Apossible smart targeting of the autophagy pathway. Virulence. 2020;11(1):805–810. doi: 10.1080/21505594.2020.1780088. PubMed DOI PMC
Richard A., Tulasne D. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis. Cell Death Dis. 2012;3:e277. doi: 10.1038/cddis.2012.18. PubMed DOI PMC
Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X. PubMed DOI PMC
Graham E.L., Clark J.R., Orban Z.S., Lim P.H., Szymanski A.L., Taylor C., DiBiase R.M., Jia D.T., Balabanov R., Ho S.U., Batra A., Liotta E.M., Koralnik I.J. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann. Clin. Transl. Neurol. 2021;8(5):1073–1085. doi: 10.1002/acn3.51350. PubMed DOI PMC
Jose R.J., Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir. Med. 2020;8(6):e46–e47. doi: 10.1016/S2213-2600(20)30216-2. PubMed DOI PMC
de la Torre J.C., Stefano G.B. Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res. Brain Res. Rev. 2000;34(3):119–136. doi: 10.1016/S0165-0173(00)00043-6. PubMed DOI
Stefano G.B., Mantione K.J., Capellan L., Casares F.M., Challenger S., Ramin R., Samuel J.M., Snyder C., Kream R.M. Morphine stimulates nitric oxide release in human mitochondria. J. Bioenerg. Biomembr. 2015;47(5):409–417. doi: 10.1007/s10863-015-9626-8. PubMed DOI
Yang L., Xie X., Tu Z., Fu J., Xu D., Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther. 2021;6(1):255. doi: 10.1038/s41392-021-00679-0. PubMed DOI PMC
Stefano G.B., Kream R.M. Convalescent memory T cell immunity in individuals with mild or asymptomatic SARS-CoV-2 infection may result from an evolutionarily adapted immune response to coronavirus and the ‘common cold’. Med. Sci. Monit. 2020;26:e929789. doi: 10.12659/MSM.929789. PubMed DOI PMC
Dance A. The Incrediible diversity of viruses. Nature. 2021;595:22–25. doi: 10.1038/d41586-021-01749-7. PubMed DOI
Büttiker P., Weissenberger S., Stefano G.B., Kream R.M., Ptacek R. SARS-CoV-2, trait anxiety, and the microbiome. Front. Psychiatry. 2021;12:720082. doi: 10.3389/fpsyt.2021.720082. PubMed DOI PMC
Stefano G.B., Ptacek R., Ptackova H., Martin A., Kream R.M. Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce ‘brain fog’ and results in behavioral changes that favor viral survival. Med. Sci. Monit. 2021;27:e930886. doi: 10.12659/MSM.930886. PubMed DOI PMC
Stefano G.B., Samuel J., Kream R.M. Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med. Sci. Monit. 2017;23:101–106. doi: 10.12659/MSM.899478. PubMed DOI PMC
Aarts C.E.M., Hiemstra I.H., Béguin E.P., Hoogendijk A.J., Bouchmal S., van Houdt M., Tool A.T.J., Mul E., Jansen M.H., Janssen H., van Alphen F.P.J., de Boer J.P., Zuur C.L., Meijer A.B., van den Berg T.K., Kuijpers T.W. Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv. 2019;3(22):3562–3574. doi: 10.1182/bloodadvances.2019031609. PubMed DOI PMC
Ngai J.C., Ko F.W., Ng S.S., To K.W., Tong M., Hui D.S. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010;15(3):543–550. doi: 10.1111/j.1440-1843.2010.01720.x. PubMed DOI PMC
Zhang P., Li J., Liu H., Han N., Ju J., Kou Y., Chen L., Jiang M., Pan F., Zheng Y., Gao Z., Jiang B. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res. 2020;8:8. doi: 10.1038/s41413-020-0084-5. PubMed DOI PMC
Bourgonje A.R., Abdulle A.E., Timens W., Hillebrands J.L., Navis G.J., Gordijn S.J., Bolling M.C., Dijkstra G., Voors A.A., Osterhaus A.D., van der Voort P.H., Mulder D.J., van Goor H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020;251(3):228–248. doi: 10.1002/path.5471. PubMed DOI PMC
Lassmann H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 2018;8(3):a028936. doi: 10.1101/cshperspect.a028936. PubMed DOI PMC
Kempuraj D., Selvakumar G.P., Ahmed M.E., Raikwar S.P., Thangavel R., Khan A., Zaheer S.A., Iyer S.S., Burton C., James D., Zaheer A. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist. 2020;26(5-6):402–414. doi: 10.1177/1073858420941476. PubMed DOI
Zanin L., Saraceno G., Panciani P.P., Renisi G., Signorini L., Migliorati K., Fontanella M.M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. (Wien) 2020;162(7):1491–1494. doi: 10.1007/s00701-020-04374-x. PubMed DOI PMC
Palao M., Fernández-Díaz E., Gracia-Gil J., Romero-Sánchez C.M., Díaz-Maroto I., Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult. Scler. Relat. Disord. 2020;45:102377. doi: 10.1016/j.msard.2020.102377. PubMed DOI PMC
Moore L., Ghannam M., Manousakis G. A first presentation of multiple sclerosis with concurrent COVID-19 infection. eNeurologicalSci. 2021;22:100299. doi: 10.1016/j.ensci.2020.100299. PubMed DOI PMC
de Maleissye M.F., Nicolas G., Saiag P. Pembrolizumab-induced demyelinating polyradiculoneuropathy. N. Engl. J. Med. 2016;375(3):296–297. doi: 10.1056/NEJMc1515584. PubMed DOI
Beitz J.M. Parkinson’s disease: a review. Front. Biosci. (Schol. Ed.) 2014;6:65–74. doi: 10.2741/S415. PubMed DOI
Das T., Hwang J.J., Poston K.L. Episodic recognition memory and the hippocampus in Parkinson’s disease: A review. Cortex. 2019;113:191–209. doi: 10.1016/j.cortex.2018.11.021. PubMed DOI PMC
Bezdicek O., Ballarini T., Buschke H., Růžička F., Roth J., Albrecht F., Růžička E., Mueller K., Schroeter M.L., Jech R. Memory impairment in Parkinson’s disease: The retrieval versus associative deficit hypothesis revisited and reconciled. Neuropsychology. 2019;33(3):391–405. doi: 10.1037/neu0000503. PubMed DOI
Krajcovicova L., Klobusiakova P., Rektorova I. Gray matter changes in parkinson’s and alzheimer’s disease and relation to cognition. Curr. Neurol. Neurosci. Rep. 2019;19(11):85. doi: 10.1007/s11910-019-1006-z. PubMed DOI PMC
Ponsen M.M., Stoffers D., Booij J., van Eck-Smit B.L., Wolters E.Ch., Berendse H.W. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann. Neurol. 2004;56(2):173–181. doi: 10.1002/ana.20160. PubMed DOI
Haddadi K., Ghasemian R., Shafizad M. Basal ganglia involvement and altered mental status: a unique neurological manifestation of coronavirus disease 2019. Cureus. 2020;12(4):e7869. doi: 10.7759/cureus.7869. PubMed DOI PMC
Bernaus A., Blanco S., Sevilla A. Glia crosstalk in neuroinflammatory diseases. Front. Cell. Neurosci. 2020;14:209. doi: 10.3389/fncel.2020.00209. PubMed DOI PMC
Abers M.S., Shandera W.X., Kass J.S. Neurological and psychiatric adverse effects of antiretroviral drugs. CNS Drugs. 2014;28(2):131–145. doi: 10.1007/s40263-013-0132-4. PubMed DOI
Fardet L., Flahault A., Kettaneh A., Tiev K.P., Généreau T., Tolédano C., Lebbé C., Cabane J. Corticosteroid-induced clinical adverse events: frequency, risk factors and patient’s opinion. Br. J. Dermatol. 2007;157(1):142–148. doi: 10.1111/j.1365-2133.2007.07950.x. PubMed DOI
Sirois F. [Delirium associated with azithromycin administration]. Can. J. Psychiatry. 2002;47(6):585–586. doi: 10.1177/070674370204700622. PubMed DOI
Moore H.C. An overview of chemotherapy-related cognitive dysfunction, or ‘chemobrain’. Oncology (Williston Park) 2014;28(9):797–804. PubMed
Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior
Independent and sensory human mitochondrial functions reflecting symbiotic evolution