Dysfunctional mitochondrial processes contribute to energy perturbations in the brain and neuropsychiatric symptoms

. 2022 ; 13 () : 1095923. [epub] 20230105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36686690

Mitochondria are complex endosymbionts that evolved from primordial purple nonsulfur bacteria. The incorporation of bacteria-derived mitochondria facilitates a more efficient and effective production of energy than what could be achieved based on previous processes alone. In this case, endosymbiosis has resulted in the seamless coupling of cytochrome c oxidase and F-ATPase to maximize energy production. However, this mechanism also results in the generation of reactive oxygen species (ROS), a phenomenon that can have both positive and negative ramifications on the host. Recent studies have revealed that neuropsychiatric disorders have a pro-inflammatory component in which ROS is capable of initiating damage and cognitive malfunction. Our current understanding of cognition suggests that it is the product of a neuronal network that consumes a substantial amount of energy. Thus, alterations or perturbations of mitochondrial function may alter not only brain energy supply and metabolite generation, but also thought processes and behavior. Mitochondrial abnormalities and oxidative stress have been implicated in several well-known psychiatric disorders, including schizophrenia (SCZ) and bipolar disorder (BPD). As cognition is highly energy-dependent, we propose that the neuronal pathways underlying maladaptive cognitive processing and psychiatric symptoms are most likely dependent on mitochondrial function, and thus involve brain energy translocation and the accumulation of the byproducts of oxidative stress. We also hypothesize that neuropsychiatric symptoms (e.g., disrupted emotional processing) may represent the vestiges of an ancient masked evolutionary response that can be used by both hosts and pathogens to promote self-repair and proliferation via parasitic and/or symbiotic pathways.

Zobrazit více v PubMed

Angrand L., Boukouaci W., Lajnef M., Richard J. R., Andreazza A., Wu C. L., et al. (2021). Low peripheral mitochondrial DNA copy number during manic episodes of bipolar disorders is associated with disease severity and inflammation. Brain Behav. Immun. 98, 349–356. 10.1016/j.bbi.2021.09.003 PubMed DOI

Angulo M. C., Kozlov A. S., Charpak S., Audinat E. (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24 (31), 6920–6927. 10.1523/JNEUROSCI.0473-04.2004 PubMed DOI PMC

Arranz M. J., de Leon J. (2007). Pharmacogenetics and pharmacogenomics of schizophrenia: A review of last decade of research. Mol. Psychiatry 12 (8), 707–747. 10.1038/sj.mp.4002009 PubMed DOI

Atkins C. M., Sweatt J. D. (1999). Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocampus. J. Neurosci. 19 (17), 7241–7248. 10.1523/JNEUROSCI.19-17-07241.1999 PubMed DOI PMC

Badjatia N., Seres D., Carpenter A., Schmidt J. M., Lee K., Mayer S. A., et al. (2012). Free Fatty acids and delayed cerebral ischemia after subarachnoid hemorrhage. Stroke 43 (3), 691–696. 10.1161/STROKEAHA.111.636035 PubMed DOI PMC

Baghel M. S., Thakur M. K. (2019). Vdac1 downregulation causes mitochondrial disintegration leading to hippocampal neurodegeneration in scopolamine-induced amnesic mice. Mol. Neurobiol. 56 (3), 1707–1718. 10.1007/s12035-018-1164-z PubMed DOI

Bajpai A., Verma A. K., Srivastava M., Srivastava R. (2014). Oxidative stress and major depression. J. Clin. Diagn Res. 8 (12), CC04–07. 10.7860/JCDR/2014/10258.5292 PubMed DOI PMC

Balestrieri E., Matteucci C., Cipriani C., Grelli S., Ricceri L., Calamandrei G., et al. (2019). Endogenous retroviruses activity as a molecular signature of neurodevelopmental disorders. Int. J. Mol. Sci. 20 (23), 6050. 10.3390/ijms20236050 PubMed DOI PMC

Boess F. G., Hendrix M., van der Staay F. J., Erb C., Schreiber R., van Staveren W., et al. (2004). Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47 (7), 1081–1092. 10.1016/j.neuropharm.2004.07.040 PubMed DOI

Bouayed J., Rammal H., Soulimani R. (2009). Oxidative stress and anxiety: Relationship and cellular pathways. Oxid. Med. Cell Longev. 2 (2), 63–67. 10.4161/oxim.2.2.7944 PubMed DOI PMC

Bouayed J., Rammal H., Younos C., Soulimani R. (2007). Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur. J. Pharmacol. 564 (1-3), 146–149. 10.1016/j.ejphar.2007.02.055 PubMed DOI

Burn A., Roy F., Freeman M., Coffin J. M. (2022). Widespread expression of the ancient HERV-K (HML-2) provirus group in normal human tissues. PLoS Biol. 20 (10), e3001826. 10.1371/journal.pbio.3001826 PubMed DOI PMC

Burtscher J., Mallet R. T., Pialoux V., Millet G. P., Burtscher M. (2022). Adaptive responses to hypoxia and/or hyperoxia in humans. Antioxid. Redox Signal 37, 887–912. 10.1089/ars.2021.0280 PubMed DOI

Buttiker P., Stefano G. B., Weissenberger S., Ptacek R., Anders M., Raboch J., et al. (2022). HIV, HSV, SARS-CoV-2 and Ebola share long-term neuropsychiatric sequelae. Neuropsychiatr. Dis. Treat. 18, 2229–2237. 10.2147/NDT.S382308 PubMed DOI PMC

Buttiker P., Weissenberger S., Ptacek R., Stefano G. B. (2021a). Interoception, trait anxiety, and the gut microbiome: A cognitive and physiological model. Med. Sci. Monit. 27, e931962. 10.12659/MSM.931962 PubMed DOI PMC

Buttiker P., Weissenberger S., Stefano G. B., Kream R. M., Ptacek R. (2021b). SARS-CoV-2, trait anxiety, and the microbiome. Front. Psychiatry 12, 720082. 10.3389/fpsyt.2021.720082 PubMed DOI PMC

Chen F., Sun J., Chen C., Zhang Y., Zou L., Zhang Z., et al. (2022). Quercetin mitigates methamphetamine-induced anxiety-like behavior through ameliorating mitochondrial dysfunction and neuroinflammation. Front. Mol. Neurosci. 15, 829886. 10.3389/fnmol.2022.829886 PubMed DOI PMC

Chen G., Jing C. H., Liu P. P., Ruan D., Wang L. (2013). Induction of autophagic cell death in the rat brain caused by iron. Am. J. Med. Sci. 345 (5), 369–374. 10.1097/MAJ.0b013e318271c031 PubMed DOI

Coyle J. T. (2013). Nitric oxide and symptom reduction in schizophrenia. JAMA Psychiatry 70 (7), 664–665. 10.1001/jamapsychiatry.2013.210 PubMed DOI

Cui J., Holmes E. H., Greene T. G., Liu P. K. (2000). Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J. 14 (7), 955–967. 10.1096/fasebj.14.7.955 PubMed DOI PMC

Dagda R. K., Cherra S. J., 3rd, Kulich S. M., Tandon A., Park D., Chu C. T. (2009). Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284 (20), 13843–13855. 10.1074/jbc.M808515200 PubMed DOI PMC

Daniels T. E., Olsen E. M., Tyrka A. R. (2020). Stress and psychiatric disorders: The role of mitochondria. Annu. Rev. Clin. Psychol. 16, 165–186. 10.1146/annurev-clinpsy-082719-104030 PubMed DOI PMC

De Chiara G., Piacentini R., Fabiani M., Mastrodonato A., Marcocci M. E., Limongi D., et al. (2019). Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. 15 (3), e1007617. 10.1371/journal.ppat.1007617 PubMed DOI PMC

Diaz-Carballo D., Klein J., Acikelli A. H., Wilk C., Saka S., Jastrow H., et al. (2017). Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells. Oncotarget 8 (56), 95945–95964. 10.18632/oncotarget.21606 PubMed DOI PMC

Esch T., Stefano G. B., Fricchione G. L., Benson H. (2002). The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinol. Lett. 23 (3), 199–208. PubMed

Esch T., Stefano G. B. (2002). Proinflammation: A common denominator or initiator of different pathophysiological disease processes. Med. Sci. Monit. 8 (5), 1–9. PubMed

Esch T., Stefano G. B., Ptacek R., Kream R. M. (2020). Emerging roles of blood-borne intact and respiring mitochondria as bidirectional mediators of pro- and anti-inflammatory processes. Med. Sci. Monit. 26, e924337. 10.12659/MSM.924337 PubMed DOI PMC

Filiou M. D., Sandi C. (2019). Anxiety and brain mitochondria: A bidirectional crosstalk. Trends Neurosci. 42 (9), 573–588. 10.1016/j.tins.2019.07.002 PubMed DOI

Frye R. E., Delatorre R., Taylor H., Slattery J., Melnyk S., Chowdhury N., et al. (2013). Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl. Psychiatry 3, e273. 10.1038/tp.2013.51 PubMed DOI PMC

Gigante A. D., Andreazza A. C., Lafer B., Yatham L. N., Beasley C. L., Young L. T. (2011). Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci. Lett. 505 (1), 47–51. 10.1016/j.neulet.2011.09.064 PubMed DOI

Gray M. W., Burger G., Lang B. F. (1999). Mitochondrial evolution. Science 283 (5407), 1476–1481. 10.1126/science.283.5407.1476 PubMed DOI

Gu F., Chauhan V., Kaur K., Brown W. T., LaFauci G., Wegiel J., et al. (2013). Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl. Psychiatry 3, e299. 10.1038/tp.2013.68 PubMed DOI PMC

Halliwell B. (2006). Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 97 (6), 1634–1658. 10.1111/j.1471-4159.2006.03907.x PubMed DOI

Hansson M. J., Mansson R., Morota S., Uchino H., Kallur T., Sumi T., et al. (2008). Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic. Biol. Med. 45 (3), 284–294. 10.1016/j.freeradbiomed.2008.04.021 PubMed DOI

Haroon E., Miller A. H., Sanacora G. (2017). Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology 42 (1), 193–215. 10.1038/npp.2016.199 PubMed DOI PMC

Hertz L. (2013). The glutamate-glutamine (GABA) cycle: Importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front. Endocrinol. (Lausanne) 4, 59. 10.3389/fendo.2013.00059 PubMed DOI PMC

Hovatta I., Juhila J., Donner J. (2010). Oxidative stress in anxiety and comorbid disorders. Neurosci. Res. 68 (4), 261–275. 10.1016/j.neures.2010.08.007 PubMed DOI

Hu D., Serrano F., Oury T. D., Klann E. (2006). Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J. Neurosci. 26 (15), 3933–3941. 10.1523/JNEUROSCI.5566-05.2006 PubMed DOI PMC

Johansson E. M., Bouchet D., Tamouza R., Ellul P., Morr A. S., Avignone E., et al. (2020). Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci. Adv. 6 (29), eabc0708. 10.1126/sciadv.abc0708 PubMed DOI PMC

Kano S., Colantuoni C., Han F., Zhou Z., Yuan Q., Wilson A., et al. (2013). Genome-wide profiling of multiple histone methylations in olfactory cells: Further implications for cellular susceptibility to oxidative stress in schizophrenia. Mol. Psychiatry 18 (7), 740–742. 10.1038/mp.2012.120 PubMed DOI PMC

Khacho M., Clark A., Svoboda D. S., MacLaurin J. G., Lagace D. C., Park D. S., et al. (2017). Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum. Mol. Genet. 26 (17), 3327–3341. 10.1093/hmg/ddx217 PubMed DOI PMC

Kulak A., Steullet P., Cabungcal J. H., Werge T., Ingason A., Cuenod M., et al. (2013). Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: Insights from animal models. Antioxid. Redox Signal 18 (12), 1428–1443. 10.1089/ars.2012.4858 PubMed DOI

Kunz M., Gama C. S., Andreazza A. C., Salvador M., Cereser K. M., Gomes F. A., et al. (2008). Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 32 (7), 1677–1681. 10.1016/j.pnpbp.2008.07.001 PubMed DOI

Lemasters J. J., Theruvath T. P., Zhong Z., Nieminen A. L. (2009). Mitochondrial calcium and the permeability transition in cell death. Biochim. Biophys. Acta 1787 (11), 1395–1401. 10.1016/j.bbabio.2009.06.009 PubMed DOI PMC

Levkovitz Y., Mendlovich S., Riwkes S., Braw Y., Levkovitch-Verbin H., Gal G., et al. (2010). A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J. Clin. Psychiatry 71 (2), 138–149. 10.4088/JCP.08m04666yel PubMed DOI

Lu S. P., Lin Feng M. H., Huang H. L., Huang Y. C., Tsou W. I., Lai M. Z. (2007). Reactive oxygen species promote raft formation in T lymphocytes. Free Radic. Biol. Med. 42 (7), 936–944. 10.1016/j.freeradbiomed.2006.11.027 PubMed DOI

Lu Z., Pu C., Zhang Y., Sun Y., Liao Y., Kang Z., et al. (2022). Oxidative stress and psychiatric disorders: Evidence from the bidirectional mendelian randomization study. Antioxidants (Basel) 11 (7), 1386. 10.3390/antiox11071386 PubMed DOI PMC

Marazziti D., Baroni S., Picchetti M., Landi P., Silvestri S., Vatteroni E., et al. (2012). Psychiatric disorders and mitochondrial dysfunctions. Eur. Rev. Med. Pharmacol. Sci. 16 (2), 270–275. PubMed

Masood A., Nadeem A., Mustafa S. J., O'Donnell J. M. (2008). Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J. Pharmacol. Exp. Ther. 326 (2), 369–379. 10.1124/jpet.108.137208 PubMed DOI PMC

Maurya S. K., Baghel M. S., GauravChaudhary V., Kaushik A., Gautam A. (2022a). Putative role of mitochondria in SARS-CoV-2 mediated brain dysfunctions: A prospect. Biotechnol. Genet. Eng. Rev., 1–26. 10.1080/02648725.2022.2108998 PubMed DOI

Maurya S. K., Gupta S., Bakshi A., Kaur H., Jain A., Senapati S., et al. (2022b). Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J. Neurosci. Res. 100 (10), 1845–1861. 10.1002/jnr.25110 PubMed DOI

McCracken E., Valeriani V., Simpson C., Jover T., McCulloch J., Dewar D. (2000). The lipid peroxidation by-product 4-hydroxynonenal is toxic to axons and oligodendrocytes. J. Cereb. Blood Flow. Metab. 20 (11), 1529–1536. 10.1097/00004647-200011000-00002 PubMed DOI

Mehta S. L., Kumari S., Mendelev N., Li P. A. (2012). Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 13, 79. 10.1186/1471-2202-13-79 PubMed DOI PMC

Michel T. M., Pulschen D., Thome J. (2012). The role of oxidative stress in depressive disorders. Curr. Pharm. Des. 18 (36), 5890–5899. 10.2174/138161212803523554 PubMed DOI

Ming X., Brimacombe M., Malek J. H., Jani N., Wagner G. C. (2008). Autism spectrum disorders and identified toxic land fills: Co-occurrence across states. Environ. Health Insights 2, 55–59. 10.4137/ehi.s830 PubMed DOI PMC

Ng F., Berk M., Dean O., Bush A. I. (2008). Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 11 (6), 851–876. 10.1017/S1461145707008401 PubMed DOI

Opii W. O., Nukala V. N., Sultana R., Pandya J. D., Day K. M., Merchant M. L., et al. (2007). Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J. Neurotrauma 24 (5), 772–789. 10.1089/neu.2006.0229 PubMed DOI

Palsson E., Finnerty N., Fejgin K., Klamer D., Wass C., Svensson L., et al. (2009). Increased cortical nitric oxide release after phencyclidine administration. Synapse 63 (12), 1083–1088. 10.1002/syn.20690 PubMed DOI

Panov A., Dikalov S., Shalbuyeva N., Hemendinger R., Greenamyre J. T., Rosenfeld J. (2007). Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am. J. Physiol. Cell Physiol. 292 (2), C708–C718. 10.1152/ajpcell.00202.2006 PubMed DOI

Paternoster V., Comert C., Kirk L. S., la Cour S. H., Fryland T., Fernandez-Guerra P., et al. (2022). The psychiatric risk gene BRD1 modulates mitochondrial bioenergetics by transcriptional regulation. Transl. Psychiatry 12 (1), 319. 10.1038/s41398-022-02053-2 PubMed DOI PMC

Picard M., Sandi C. (2021). The social nature of mitochondria: Implications for human health. Neurosci. Biobehav Rev. 120, 595–610. 10.1016/j.neubiorev.2020.04.017 PubMed DOI PMC

Pierron D., Wildman D. E., Huttemann M., Markondapatnaikuni G. C., Aras S., Grossman L. I. (2012). Cytochrome c oxidase: Evolution of control via nuclear subunit addition. Biochim. Biophys. Acta 1817 (4), 590–597. 10.1016/j.bbabio.2011.07.007 PubMed DOI PMC

Qiao J., Li A., Cao C., Wang Z., Sun J., Xu G. (2017). Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front. Hum. Neurosci. 11, 626. 10.3389/fnhum.2017.00626 PubMed DOI PMC

Rasola A., Sciacovelli M., Pantic B., Bernardi P. (2010). Signal transduction to the permeability transition pore. FEBS Lett. 584 (10), 1989–1996. 10.1016/j.febslet.2010.02.022 PubMed DOI PMC

Raymond J. G., Steele J. D., Series P. (2017). Modeling trait anxiety: From computational processes to personality. Front. Psychiatry 8, 1. 10.3389/fpsyt.2017.00001 PubMed DOI PMC

Rose S., Melnyk S., Pavliv O., Bai S., Nick T. G., Frye R. E., et al. (2012). Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry 2, e134. 10.1038/tp.2012.61 PubMed DOI PMC

Rossignol D. A., Frye R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 17 (4), 389–401. 10.1038/mp.2011.165 PubMed DOI PMC

Scola G., Kim H. K., Young L. T., Andreazza A. C. (2013). A fresh look at complex I in microarray data: Clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol. Psychiatry 73 (2), e4–e5. 10.1016/j.biopsych.2012.06.028 PubMed DOI

Singh K. K., Chaubey G., Chen J. Y., Suravajhala P. (2020). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319 (2), C258–C267. 10.1152/ajpcell.00224.2020 PubMed DOI PMC

Song E., Zhang C., Israelow B., Lu-Culligan A., Prado A. V., Skriabine S., et al. (2021). Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218 (3), e20202135. 10.1084/jem.20202135 PubMed DOI PMC

Stefano G. B., Buttiker P., Kream R. M. (2022c). Reassessment of the blood-brain barrier: A potential target for viral entry into the immune-privileged brain. Germs 12 (1), 99–101. 10.18683/germs.2022.1310 PubMed DOI PMC

Stefano G. B., Bilfinger T. V., Fricchione G. L. (1994). The immune neuro-link and the macrophage: Postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog. Neurobiol. 42, 475–488. 10.1016/0301-0082(94)90048-5 PubMed DOI

Stefano G. B., Buttiker P., Weissenberger S., Ptacek R., Wang F., Esch T., et al. (2022d). Biomedical perspectives of acute and chronic neurological and neuropsychiatric sequelae of COVID-19. Curr. Neuropharmacol. 20 (6), 1229–1240. 10.2174/1570159X20666211223130228 PubMed DOI PMC

Stefano G. B., Esch T., Kream R. M. (2019a). Augmentation of whole-body metabolic status by mind-body training: Synchronous integration of tissue- and organ-specific mitochondrial function. Med. Sci. Monit. Basic Res. 25, 8–14. 10.12659/MSMBR.913264 PubMed DOI PMC

Stefano G. B., Esch T., Kream R. M. (2019b). Behaviorally-mediated entrainment of whole-body metabolic processes: Conservation and evolutionary development of mitochondrial respiratory complexes. Med. Sci. Monit. 25, 9306–9309. 10.12659/MSM.920174 PubMed DOI PMC

Stefano G. B. (2021). Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit. 27, e931447. 10.12659/MSM.931447 PubMed DOI PMC

Stefano G. B., Kim C., Mantione K. J., Casares F. M., Kream R. M. (2012). Targeting mitochondrial biogenesis for promoting health. Med. Sci. Monit. 18 (3), SC1–SC3. 10.12659/msm.882526 PubMed DOI PMC

Stefano G. B., Kream R. M. (2015b). Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med. Sci. Monit. 21, 1478–1484. 10.12659/MSM.894437 PubMed DOI PMC

Stefano G. B., Kream R. M. (2022a). Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 neurological disorders. Cell Mol. Neurobiol. 42 (1), 99–107. 10.1007/s10571-021-01117-z PubMed DOI PMC

Stefano G. B., Kream R. M. (2022b). Viruses broaden the definition of life by genomic incorporation of artificial intelligence and machine learning processes. Curr. Neuropharmacol. 20, 1888–1893. 10.2174/1570159X20666220420121746 PubMed DOI PMC

Stefano G. B., Kream R. (2015a). Psychiatric disorders involving mitochondrial processes. Psychol. Obs. 1, 1–6.

Stefano G. B., Ptacek R., Ptackova H., Martin A., Kream R. M. (2021). Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce 'brain fog' and results in behavioral changes that favor viral survival. Med. Sci. Monit. 27, e930886. 10.12659/MSM.930886 PubMed DOI PMC

Stefano G. B., Scharrer B. (1994). Endogenous morphine and related opiates, a new class of chemical messengers. Adv. Neuroimmunol. 4, 57–67. 10.1016/s0960-5428(05)80001-4 PubMed DOI

Tamouza R., Meyer U., Foiselle M., Richard J. R., Wu C. L., Boukouaci W., et al. (2021). Identification of inflammatory subgroups of schizophrenia and bipolar disorder patients with HERV-W ENV antigenemia by unsupervised cluster analysis. Transl. Psychiatry 11 (1), 377. 10.1038/s41398-021-01499-0 PubMed DOI PMC

Tobe E. H. (2013). Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr. Dis. Treat. 9, 567–573. 10.2147/NDT.S44282 PubMed DOI PMC

Tsaluchidu S., Cocchi M., Tonello L., Puri B. K. (2008). Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry 8, S5. 10.1186/1471-244X-8-S1-S5 PubMed DOI PMC

Umare M. D., Wankhede N. L., Bajaj K. K., Trivedi R. V., Taksande B. G., Umekar M. J., et al. (2022). Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann. Pharm. Fr. 80 (4), 409–425. 10.1016/j.pharma.2021.11.004 PubMed DOI

Versace A., Andreazza A. C., Young L. T., Fournier J. C., Almeida J. R., Stiffler R. S., et al. (2014). Elevated serum measures of lipid peroxidation and abnormal prefrontal white matter in euthymic bipolar adults: Toward peripheral biomarkers of bipolar disorder. Mol. Psychiatry 19 (2), 200–208. 10.1038/mp.2012.188 PubMed DOI PMC

Wang F., Kream R. M., Stefano G. B. (2020). Long-term respiratory and neurological sequelae of COVID-19. Med. Sci. Monit. 26, e928996. 10.12659/MSM.928996 PubMed DOI PMC

Wang X., Gerdes H. H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22 (7), 1181–1191. 10.1038/cdd.2014.211 PubMed DOI PMC

Wang X., Pinto-Duarte A., Sejnowski T. J., Behrens M. M. (2013). How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptor antagonist model of schizophrenia. Antioxid. Redox Signal 18 (12), 1444–1462. 10.1089/ars.2012.4907 PubMed DOI PMC

Wang X., Zhao X. (2009). Contribution of oxidative damage to antimicrobial lethality. Antimicrob. Agents Chemother. 53 (4), 1395–1402. 10.1128/AAC.01087-08 PubMed DOI PMC

Wass C., Archer T., Palsson E., Fejgin K., Alexandersson A., Klamer D., et al. (2006). Phencyclidine affects memory in a nitric oxide-dependent manner: Working and reference memory. Behav. Brain Res. 174 (1), 49–55. 10.1016/j.bbr.2006.07.003 PubMed DOI

Wass C. E., Andreazza A. (2013). The redox brain and nitric oxide: Implications for psychiatric illness. J. Pharmacol. Clin. Toxicol. 1 (1), 1008–1009. 10.47739/2333-7079/1008 DOI

Watt I. N., Montgomery M. G., Runswick M. J., Leslie A. G., Walker J. E. (2010). Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl. Acad. Sci. U.S.A 107 (39), 16823–16827. piidoi. 10.1073/pnas.1011099107 PubMed DOI PMC

Weeber E. J., Levy M., Sampson M. J., Anflous K., Armstrong D. L., Brown S. E., et al. (2002). The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J. Biol. Chem. 277 (21), 18891–18897. 10.1074/jbc.M201649200 PubMed DOI

Wei P., Yang F., Zheng Q., Tang W., Li J. (2019). The potential role of the NLRP3 inflammasome activation as a link between mitochondria ROS generation and neuroinflammation in postoperative cognitive dysfunction. Front. Cell Neurosci. 13, 73. 10.3389/fncel.2019.00073 PubMed DOI PMC

Wei W., Schon K. R., Elgar G., Orioli A., Tanguy M., Giess A., et al. (2022). Nuclear-embedded mitochondrial DNA sequences in 66, 083 human genomes. Nature 611, 105–114. 10.1038/s41586-022-05288-7 PubMed DOI PMC

Werner C., Raivich G., Cowen M., Strekalova T., Sillaber I., Buters J. T., et al. (2004). Importance of NO/cGMP signalling via cGMP-dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol. Eur. J. Neurosci. 20 (12), 3498–3506. 10.1111/j.1460-9568.2004.03793.x PubMed DOI

Xu X., Yuan H., Lei X. (2016). Activation and connectivity within the default mode network contribute independently to future-oriented thought. Sci. Rep. 6, 21001. 10.1038/srep21001 PubMed DOI PMC

Zhou Y., Frey T. K., Yang J. J. (2009). Viral calciomics: Interplays between Ca2+ and virus. Cell Calcium 46 (1), 1–17. 10.1016/j.ceca.2009.05.005 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...