HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36221293
PubMed Central
PMC9548297
DOI
10.2147/ndt.s382308
PII: 382308
Knihovny.cz E-zdroje
- Klíčová slova
- HIV-1, SARS virus, interoception, neuropsychiatry, virus latency,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Long COVID, in which disease-related symptoms persist for months after recovery, has led to a revival of the discussion of whether neuropsychiatric long-term symptoms after viral infections indeed result from virulent activity or are purely psychological phenomena. In this review, we demonstrate that, despite showing differences in structure and targeting, many viruses have highly similar neuropsychiatric effects on the host. Herein, we compare severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus 1 (HIV-1), Ebola virus disease (EVD), and herpes simplex virus 1 (HSV-1). We provide evidence that the mutual symptoms of acute and long-term anxiety, depression and post-traumatic stress among these viral infections are likely to result from primary viral activity, thus suggesting that these viruses share neuroinvasive strategies in common. Moreover, it appears that secondary induced environmental stress can lead to the emergence of psychopathologies and increased susceptibility to viral (re)infection in infected individuals. We hypothesize that a positive feedback loop of virus-environment-reinforced systemic responses exists. It is surmised that this cycle of primary virulent activity and secondary stress-induced reactivation, may be detrimental to infected individuals by maintaining and reinforcing the host's immunocompromised state of chronic inflammation, immunological strain, and maladaptive central-nervous-system activity. We propose that this state can lead to perturbed cognitive processing and promote aversive learning, which may manifest as acute, long-term neuropsychiatric illness.
Zobrazit více v PubMed
Ptacek R, Ptackova H, Martin A, Stefano GB. Psychiatric manifestations of COVID-19 and their social significance. Med Sci Monit. 2020;26:e930340. doi:10.12659/MSM.930340 PubMed DOI PMC
Chenneville T, Gabbidon K, Hanson P, Holyfield C. The impact of COVID-19 on HIV treatment and research: a call to action. Int J Environ Res Public Health. 2020;17(12):4548. doi:10.3390/ijerph17124548 PubMed DOI PMC
Parasher A. COVID research: a year of scientific milestones. Nature. 2021. doi:10.1038/d41586-020-00502-w PubMed DOI
Wang C, Wang Z, Wang G, Lau JY, Zhang K, Li W. COVID-19 in early 2021: current status and looking forward. Signal Transduct Target Ther. 2021;6(1):114. doi:10.1038/s41392-021-00527-1 PubMed DOI PMC
Stefano GB, Ptacek R, Ptackova H, Martin A, Kream RM. Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce “Brain Fog” and results in behavioral changes that favor viral survival. Med Sci Monit. 2021;27:e930886. doi:10.12659/MSM.930886 PubMed DOI PMC
Wang F, Kream RM, Stefano GB. Long-term respiratory and neurological sequelae of COVID-19. Med Sci Monit. 2020;26:e928996. doi:10.12659/MSM.928996 PubMed DOI PMC
Stefano GB, Buttiker P, Weissenberger S, Martin A, Ptacek R, Kream RM. Editorial: the pathogenesis of long-term neuropsychiatric COVID-19 and the role of microglia, mitochondria, and persistent neuroinflammation: a hypothesis. Med Sci Monit. 2021;27:e933015. doi:10.12659/MSM.933015 PubMed DOI PMC
Thangaraj A, Periyasamy P, Liao K, et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy. 2018;14(9):1596–1619. doi:10.1080/15548627.2018.1476810 PubMed DOI PMC
Qiao H, Guo M, Shang J, et al. Herpes simplex virus type 1 infection leads to neurodevelopmental disorder-associated neuropathological changes. PLoS Pathog. 2020;16(10):e1008899. doi:10.1371/journal.ppat.1008899 PubMed DOI PMC
Lotsch F, Schnyder J, Goorhuis A, Grobusch MP. Neuropsychological long-term sequelae of Ebola virus disease survivors - A systematic review. Travel Med Infect Dis. 2017;18:18–23. doi:10.1016/j.tmaid.2017.05.001 PubMed DOI
Bah AJ, James PB, Bah N, Sesay AB, Sevalie S, Kanu JS. Prevalence of anxiety, depression and post-traumatic stress disorder among Ebola survivors in northern Sierra Leone: a cross-sectional study. BMC Public Health. 2020;20(1):1391. doi:10.1186/s12889-020-09507-6 PubMed DOI PMC
Wallet C, De Rovere M, Van Assche J, et al. Microglial cells: the main HIV-1 reservoir in the brain. review. Front Cell Infect Microbiol. 2019;9(362). doi:10.3389/fcimb.2019.00362 PubMed DOI PMC
Illanes-Alvarez F, Marquez-Ruiz D, Marquez-Coello M, Cuesta-Sancho S, Giron-Gonzalez JA. Similarities and differences between HIV and SARS-CoV-2. Int J Med Sci. 2021;18(3):846–851. doi:10.7150/ijms.50133 PubMed DOI PMC
Osborne O, Peyravian N, Nair M, Daunert S, Toborek M. The paradox of HIV blood-brain barrier penetrance and antiretroviral drug delivery deficiencies. Trends Neurosci. 2020;43(9):695–708. doi:10.1016/j.tins.2020.06.007 PubMed DOI PMC
Sawada M, Suzumura A, Marunouchi T. Down regulation of CD4 expression in cultured microglia by immunosuppressants and lipopolysaccharide. Biochem Biophys Res Commun. 1992;189(2):869–876. doi:10.1016/0006-291x(92)92284-5 PubMed DOI
Stefano GB, Bilfinger TV, Fricchione GL. The immune-neuro-link and the macrophage: postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog Neurobiol. 1994;42(4):475–488. doi:10.1016/0301-0082(94)90048-5 PubMed DOI
Meyding-Lamade U, Strank C. Herpesvirus infections of the central nervous system in immunocompromised patients. Ther Adv Neurol Disord. 2012;5(5):279–296. doi:10.1177/1756285612456234 PubMed DOI PMC
Keita AK, Koundouno FR, Faye M, et al. Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature. 2021;597(7877):539–543. doi:10.1038/s41586-021-03901-9 PubMed DOI
Tavcar P, Potokar M, Kolenc M, et al. Neurotropic viruses, astrocytes, and COVID-19. Front Cell Neurosci. 2021;15:662578. doi:10.3389/fncel.2021.662578 PubMed DOI PMC
Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020;41(10):2657–2669. doi:10.1007/s10072-020-04575-3 PubMed DOI PMC
Xiang Q, Feng Z, Diao B, et al. SARS-CoV-2 induces lymphocytopenia by promoting inflammation and decimates secondary lymphoid organs. Front Immunol. 2021;12(1292). doi:10.3389/fimmu.2021.661052 PubMed DOI PMC
Kumari P, Rothan HA, Natekar JP, et al. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses. 2021;13(1):132. doi:10.3390/v13010132 PubMed DOI PMC
Büttiker P, Weissenberger S, Stefano GB, Kream RM, Ptacek R. SARS-CoV-2, trait anxiety, and the microbiome. Mini review. Front Psychiatry. 2021;12(1551). doi:10.3389/fpsyt.2021.720082 PubMed DOI PMC
Stefano GB, Buttiker P, Kream RM. Reassessment of the blood-brain barrier: a potential target for viral entry into the immune-privileged brain. Germs. 2022;12(1):99–101. doi:10.18683/germs.2022.1310 PubMed DOI PMC
Levine A, Sacktor N, Becker JT. Studying the neuropsychological sequelae of SARS-CoV-2: lessons learned from 35 years of neuroHIV research. J Neurovirol. 2020;26(6):809–823. doi:10.1007/s13365-020-00897-2 PubMed DOI PMC
Stefano GB. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med Sci Monit. 2021;27:e931447. doi:10.12659/MSM.931447 PubMed DOI PMC
Mayer KA, Stockl J, Zlabinger GJ, Gualdoni GA. Hijacking the supplies: metabolism as a novel facet of virus-host interaction. Front Immunol. 2019;10:1533. doi:10.3389/fimmu.2019.01533 PubMed DOI PMC
Kirsch-Volders M, Fenech M. Inflammatory cytokine storms severity may be fueled by interactions of micronuclei and RNA viruses such as COVID-19 virus SARS-CoV-2. A hypothesis. Mutat Res Rev Mutat Res. 2021;788:108395. doi:10.1016/j.mrrev.2021.108395 PubMed DOI PMC
Ollig J, Kloubert V, Taylor KM, Rink L. B cell activation and proliferation increase intracellular zinc levels. J Nutr Biochem. 2019;64:72–79. doi:10.1016/j.jnutbio.2018.10.008 PubMed DOI PMC
Sanchez EL, Lagunoff M. Viral activation of cellular metabolism. Virology. 2015;479–480:609–618. doi:10.1016/j.virol.2015.02.038 PubMed DOI PMC
Carty M, Guy C, Bowie AG. Detection of Viral Infections by Innate Immunity. Biochem Pharmacol. 2021;183:114316. doi:10.1016/j.bcp.2020.114316 PubMed DOI
Shytaj IL, Procopio FA, Tarek M, et al. Glycolysis downregulation is a hallmark of HIV-1 latency and sensitizes infected cells to oxidative stress. EMBO Mol Med. 2021;13(8):e13901. doi:10.15252/emmm.202013901 PubMed DOI PMC
Duette G, Pereyra Gerber P, Rubione J, et al. Induction of HIF-1alpha by HIV-1 infection in CD4(+) T cells promotes viral replication and drives extracellular vesicle-mediated inflammation. mBio. 2018;9(5). doi:10.1128/mBio.00757-18 PubMed DOI PMC
Kang S, Tang H. HIV-1 infection and glucose metabolism reprogramming of T cells: another approach toward functional cure and reservoir eradication. Front Immunol. 2020;11:572677. doi:10.3389/fimmu.2020.572677 PubMed DOI PMC
Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193–215. doi:10.1038/npp.2016.199 PubMed DOI PMC
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13. doi:10.1042/BJ20081386 PubMed DOI PMC
Kanellopoulos AK, Mariano V, Spinazzi M, et al. Aralar sequesters GABA into hyperactive mitochondria, causing social behavior deficits. Cell. 2020;180(6):1178–1197 e20. doi:10.1016/j.cell.2020.02.044 PubMed DOI
Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and glutamine: SARS-CoV-2 triggered pathogenesis via metabolic reprograming of glutamine in host cells. Front Mol Biosci. 2020;7:627842. doi:10.3389/fmolb.2020.627842 PubMed DOI PMC
Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 neurological disorders. Cell Mol Neurobiol. 2022;42(1):99–107. doi:10.1007/s10571-021-01117-z PubMed DOI PMC
Stefano GB, Kream RM. Viruses broaden the definition of life by genomic incorporation of artificial intelligence and machine learning processes. Curr Neuropharmacol. 2022;20:1888–1893. doi:10.2174/1570159X20666220420121746 PubMed DOI PMC
Majolo F, Silva GLD, Vieira L, et al. Neuropsychiatric disorders and COVID-19: what we know so far. Pharmaceuticals. 2021;14(9):Sep. doi:10.3390/ph14090933 PubMed DOI PMC
Iadecola C, Anrather J, Kamel H. Effects of COVID-19 on the nervous system. Cell. 2020;183(1):16–27e1. doi:10.1016/j.cell.2020.08.028 PubMed DOI PMC
Wenzel J, Lampe J, Muller-Fielitz H, et al. The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci. 2021;24(11):1522–1533. doi:10.1038/s41593-021-00926-1 PubMed DOI PMC
Bodnar B, Patel K, Ho W, Luo JJ, Hu W. Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J Med Virol. 2021;93(4):1983–1998. doi:10.1002/jmv.26720 PubMed DOI PMC
Hosen I, Al-Mamun F, Mamun MA. Prevalence and risk factors of the symptoms of depression, anxiety, and stress during the COVID-19 pandemic in Bangladesh: a systematic review and meta-analysis. Glob Ment Health. 2021;8:e47. doi:10.1017/gmh.2021.49 PubMed DOI PMC
Alzahrani F, Alshahrani NZ, Abu sabah A, Zarbah A, Abu Sabah S, Mamun MA. Prevalence and factors associated with mental health problems in Saudi general population during the coronavirus disease 2019 pandemic: a systematic review and meta-analysis. Psych J. 2022;11(1):18–29. doi:10.1002/pchj.516 PubMed DOI
Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–627. doi:10.1016/S2215-0366(20)30203-0 PubMed DOI PMC
Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–427. doi:10.1016/S2215-0366(21)00084-5 PubMed DOI PMC
Singer EJ, Thames AD. Neurobehavioral manifestations of human immunodeficiency virus/AIDS: diagnosis and treatment. Neurol Clin. 2016;34(1):33–53. doi:10.1016/j.ncl.2015.08.003 PubMed DOI PMC
Alvarez-Carbonell D, Ye F, Ramanath N, et al. Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog. 2019;15(12):e1008249. doi:10.1371/journal.ppat.1008249 PubMed DOI PMC
Celesia BM, Nigro L, Pinzone MR, et al. High prevalence of undiagnosed anxiety symptoms among HIV-positive individuals on cART: a cross-sectional study. Eur Rev Med Pharmacol Sci. 2013;17(15):2040–2046. PubMed
Smith MY, Egert J, Winkel G, Jacobson J. The impact of PTSD on pain experience in persons with HIV/AIDS. Pain. 2002;98(1–2):9–17. doi:10.1016/s0304-3959(01)00431-6 PubMed DOI
Shacham E, Morgan JC, Onen NF, Taniguchi T, Overton ET. Screening anxiety in the HIV clinic. AIDS Behav. 2012;16(8):2407–2413. doi:10.1007/s10461-012-0238-6 PubMed DOI PMC
Ye J, Wen Y, Chu X, et al. Association between herpes simplex virus 1 exposure and the risk of depression in UK Biobank. Clin Transl Med. 2020;10(2):e108. doi:10.1002/ctm2.108 PubMed DOI PMC
van Heugten-van der Kloet D, van Heugten T. The classification of psychiatric disorders according to DSM-5 deserves an internationally standardized psychological test battery on symptom level. Front Psychol. 2015;6:1108. doi:10.3389/fpsyg.2015.01108 PubMed DOI PMC
Mamun MA. Exploring factors in fear of COVID-19 and its GIS-based nationwide distribution: the case of Bangladesh. BJPsych Open. 2021;7(5):e150. doi:10.1192/bjo.2021.984 PubMed DOI PMC
Al Mamun F, Hosen I, Misti JM, Kaggwa MM, Mamun MA. Mental disorders of bangladeshi students during the COVID-19 pandemic: a systematic review. Psychol Res Behav Manag. 2021;14:645–654. doi:10.2147/PRBM.S315961 PubMed DOI PMC
Taylor MA, Vaidya NA. Psychopathology in neuropsychiatry: DSM and beyond. J Neuropsychiatry Clin Neurosci. 2005;17(2):246–249. doi:10.1176/jnp.17.2.246 PubMed DOI
Saladino V, Algeri D, Auriemma V. The psychological and social impact of covid-19: new perspectives of well-being. Front Psychol. 2020;11:577684. doi:10.3389/fpsyg.2020.577684 PubMed DOI PMC
Tolentino JC, Schmidt SL. DSM-5 criteria and depression severity: implications for clinical practice. original research. Front Psychiatry. 2018;9(450). doi:10.3389/fpsyt.2018.00450 PubMed DOI PMC
Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130(4):601–630. doi:10.1037/0033-2909.130.4.601 PubMed DOI PMC
Buttiker P, Weissenberger S, Ptacek R, Stefano GB. Interoception, trait anxiety, and the gut microbiome: a cognitive and physiological model. Med Sci Monit. 2021;27:e931962. doi:10.12659/MSM.931962 PubMed DOI PMC
Srivastava KK, Kumar R. Stress, oxidative injury and disease. Indian J Clin Biochem. 2015;30(1):3–10. doi:10.1007/s12291-014-0441-5 PubMed DOI PMC
Schiavone S, Jaquet V, Trabace L, Krause KH. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal. 2013;18(12):1475–1490. doi:10.1089/ars.2012.4720 PubMed DOI PMC
Simioni C, Zauli G, Martelli AM, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9(24):17181–17198. doi:10.18632/oncotarget.24729 PubMed DOI PMC
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the blood-brain barrier. Int J Mol Sci. 2021;22(5):2681. doi:10.3390/ijms22052681 PubMed DOI PMC
Rhea EM, Logsdon AF, Hansen KM, et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci. 2021;24(3):368–378. doi:10.1038/s41593-020-00771-8 PubMed DOI PMC
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32. doi:10.1128/MMBR.05015-11 PubMed DOI PMC
Cox MA, Kahan SM, Zajac AJ. Anti-viral CD8 T cells and the cytokines that they love. Virology. 2013;435(1):157–169. doi:10.1016/j.virol.2012.09.012 PubMed DOI PMC
Stefano GB, Pilonis N, Ptacek R, Raboch J, Vnukova M, Kream RM. Gut, microbiome, and brain regulatory axis: relevance to neurodegenerative and psychiatric disorders. Cell Mol Neurobiol. 2018;38(6):1197–1206. doi:10.1007/s10571-018-0589-2 PubMed DOI PMC
Putra RD, Lyrawati D. Interactions between bacteriophages and eukaryotic cells. Scientifica. 2020;2020:3589316. doi:10.1155/2020/3589316 PubMed DOI PMC
Van Belleghem JD, Dabrowska K, Vaneechoutte M, Barr JJ, Bollyky PL. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses. 2018;11(1):10. doi:10.3390/v11010010 PubMed DOI PMC
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16(1):53. doi:10.1186/s12974-019-1434-3 PubMed DOI PMC
Garry RF. Ebola virus can lie low and reactivate after years in human survivors. Nature. 2021;597(7877):478–480. doi:10.1038/d41586-021-02378-w PubMed DOI