Gut, Microbiome, and Brain Regulatory Axis: Relevance to Neurodegenerative and Psychiatric Disorders

. 2018 Aug ; 38 (6) : 1197-1206. [epub] 20180525

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29802603
Odkazy

PubMed 29802603
PubMed Central PMC6061125
DOI 10.1007/s10571-018-0589-2
PII: 10.1007/s10571-018-0589-2
Knihovny.cz E-zdroje

It has become apparent that the molecular and biochemical integrity of interactive families, genera, and species of human gut microflora is critically linked to maintaining complex metabolic and behavioral processes mediated by peripheral organ systems and central nervous system neuronal groupings. Relatively recent studies have established intrinsic ratios of enterotypes contained within the human microbiome across demographic subpopulations and have empirically linked significant alterations in the expression of bacterial enterotypes with the initiation and persistence of several major metabolic and psychiatric disorders. Accordingly, the goal of our review is to highlight potential thematic/functional linkages of pathophysiological alterations in gut microbiota and bidirectional gut-brain signaling pathways with special emphasis on the potential roles of gut dysbiosis on the pathophysiology of psychiatric illnesses. We provide critical discussion of putative thematic linkages of Parkinson's disease (PD) data sets to similar pathophysiological events as potential causative factors in the development and persistence of diverse psychiatric illnesses. Finally, we include a concise review of preclinical paradigms that involve immunologically-induced GI deficits and dysbiosis of maternal microflora that are functionally linked to impaired neurodevelopmental processes leading to affective behavioral syndromes in the offspring.

Zobrazit více v PubMed

Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci. 2013;4:48–63. PubMed PMC

Barthels C, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715. PubMed PMC

Beaumont E, et al. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Am J Physiol Heart Circ Physiol. 2017;313:H354-H367. PubMed PMC

Bedarf JR, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med. 2017;9:39. PubMed PMC

Bieri G, Gitler AD, Brahic M. Internalization, axonal transport and release of fibrillar forms of alpha-synuclein. Neurobiol Dis. 2017 PubMed PMC

Bodea LG, et al. Neurodegeneration by activation of the microglial complement-phagosome pathway. J Neurosci. 2014;34:8546–8556. PubMed PMC

Borodovitsyna O, Flamini M, Chandler D. Noradrenergic modulation of cognition in health and disease. Neural Plast. 2017;2017:6031478. PubMed PMC

Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014;817:373–403. PubMed

Braak H, Del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J Park Dis. 2017;7:S73S87. PubMed PMC

Braak H, Rub U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm. 2003;110:517–536. PubMed

Caputi V, et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol. 2017;174:3623–3639. PubMed PMC

Carreno FR, Frazer A. Vagal nerve stimulation for treatment-resistant. Depress Neurother. 2017;14:716–727. PubMed PMC

Coleman OI, Haller D. Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Front Immunol. 2017;8:1927. PubMed PMC

De Biase D, Pennacchietti E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol. 2012;86:770–786. PubMed

De Filippis R, et al. Expanding the phenotype associated with FOXG1 mutations and in vivo FoxG1 chromatin-binding dynamics. Clin Genet. 2012;82:395–403. PubMed

de Muinck EJ, Lundin KEA, Trosvik P. Linking spatial structure and community-level biotic interactions through cooccurrence and time series modeling of the human intestinal microbiota. mSystems. 2017 PubMed PMC

Devos D, et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013;50:42–48. PubMed

Diaz Heijtz R, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–3052. PubMed PMC

Dinan TG, Cryan JF. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42:178–192. PubMed PMC

Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015;63:1–9. PubMed

Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW. Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand. 1999;100:34–41. PubMed

Dworak M, Stebbing M, Kompa AR, Rana I, Krum H, Badoer E. Attenuation of microglial and neuronal activation in the brain by ICV minocycline following myocardial infarction. Auton Neurosci. 2014;185:43–50. PubMed

Esmaili A, et al. Enteropathogenic Escherichia coli infection inhibits intestinal serotonin transporter function and expression. Gastroenterology. 2009;137:2074–2083. PubMed PMC

Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson’s disease. Brain Stimul. 2017 PubMed PMC

Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–2301. PubMed

Forsyth CB, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE. 2011;6:e28032. PubMed PMC

Frohlich EE, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun. 2016;56:140–155. PubMed PMC

Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132:397–414. PubMed

Giannoccaro MP, La Morgia C, Rizzo G, Carelli V. Mitochondrial DNA and primary mitochondrial dysfunction in Parkinson’s disease. Mov Disord. 2017;32:346–363. PubMed

Hoffman JM, et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology. 2012;142:844–854 e844. PubMed PMC

Hsiao EY. Immune dysregulation in autism spectrum disorder. Int Rev Neurobiol. 2013;113:269–302. PubMed

Humann J, et al. Bacterial peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe. 2016;19:901. PubMed

Hyland NP, Cryan JF. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol. 2016;417:182–187. PubMed

Ivanov AI. Structure and regulation of intestinal epithelial tight junctions: current concepts and unanswered questions. Adv Exp Med Biol. 2012;763:132–148. PubMed

Jin Y, Kong J. Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders. Front Neurosci. 2017;10:609. PubMed PMC

Kang DW, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5:10. PubMed PMC

Kelly CJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–671. PubMed PMC

Kelly JR, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–118. PubMed

Kosikowska U, Biernasiuk A, Korona-Glowniak I, Kiciak S, Tomasiewicz K, Malm A. The association of chronic hepatitis C with respiratory microbiota disturbance on the basis of decreased Haemophilus spp. colonization. Med Sci Monit. 2016;22:625–632. PubMed PMC

Kutchko KM, Siltberg-Liberles J. Metazoan innovation: from aromatic amino acids to extracellular signaling. Amino Acids. 2013;45:359–367. PubMed PMC

Lamberts JT, Hildebrandt EN, Brundin P. Spreading of alpha-synuclein in the face of axonal transport deficits in Parkinson’s disease: a speculative synthesis. Neurobiol Dis. 2015;77:276–283. PubMed

Lang AS, Beatty JT. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci USA. 2000;97:859–864. PubMed PMC

Le W, Rowe D, Xie W, Ortiz I, He Y, Appel SH. Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s disease. J Neurosci. 2001;21:8447–8455. PubMed PMC

Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P. The second brain and Parkinson’s disease. Eur J Neurosci. 2009;30:735–741. PubMed

Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology. 2013;159:402–410. PubMed

Liu WH, Chuang HL, Huang YT, Wu CC, Chou GT, Wang S, Tsai YC. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res. 2016;298:202–209. PubMed

Lucas N, Hubain P, Loas G, Jurysta F. Treatment resistant depression: actuality and perspectives in 2017. Rev Med Brux. 2017;38:16–25. PubMed

Macedo D, Filho A, Soares de Sousa CN, Quevedo J, Barichello T, Junior HVN, Freitas de Lucena D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord. 2017;208:22–32. PubMed

Main BS, Minter MR. Microbial immuno-communication in neurodegenerative diseases. Front Neurosci. 2017;11:151. PubMed PMC

Malkki H. Parkinson disease: could gut microbiota influence severity of Parkinson disease? Nat Rev Neurol. 2017;13:66–67. PubMed

Manoharan I, et al. Homeostatic PPARα signaling limits inflammatory responses to commensal microbiota in the intestine. J Immunol. 2016;196:4739–4749. PubMed PMC

Mariani J, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism. Spectr Disord Cell. 2015;162:375–390. PubMed PMC

Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ. The diverse metabolic roles of peripheral serotonin. Endocrinology. 2017;158:1049–1063. PubMed

Mawe GM, Hoffman JM. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473–486. PubMed PMC

McWilliams TG, Muqit MM. PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol. 2017;45:83–91. PubMed

Mertsalmi TH, Aho VTE, Pereira PAB, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. More than constipation—bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol. 2017;24:1375–1383. PubMed

Mittal R, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017;232:2359–2372. PubMed PMC

Moonen AJH, Wijers A, Dujardin K, Leentjens AFG. Neurobiological correlates of emotional processing in Parkinson’s disease: a systematic review of experimental studies. J Psychosom Res. 2017;100:65–76. PubMed

Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol. 2015;21:10609–10620. PubMed PMC

Noble EE, Hsu TM, Kanoski SE. Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci. 2017;11:9. PubMed PMC

Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016;151:836–844. PubMed PMC

O’Leary OF, et al. The vagus nerve modulates BDNF expression and neurogenesis in the hippocampus. Eur Neuropsychopharmacol. 2018;28:307–316. PubMed

O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48. PubMed

Omenetti S, Pizarro TT. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol. 2015;6:639. PubMed PMC

Özoğul F. Production of biogenic amines by Morganella morganii, Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur Food Res Technol. 2004;219:465–469.

Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol. 2013;36:82–90. PubMed

Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37:984–995. PubMed PMC

Ray A, Dittel BN. Interrelatedness between dysbiosis in the gut microbiota due to immunodeficiency and disease penetrance of colitis. Immunology. 2015;146:359–368. PubMed PMC

Reigstad CS, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29:1395–1403. PubMed PMC

Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD. Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol. 2017;8:37. PubMed PMC

Rivard L, Srinivasan J, Stone A, Ochoa S, Sternberg PW, Loer CM. A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans. BMC Neurosci. 2010;11:22. PubMed PMC

Rolig AS, et al. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol. 2017;15:e2000689. PubMed PMC

Roshchina VV. Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Lyte M, Freestone PPE, editors. Microbial endocrinology: interkingdom signaling in infectious disease and health. New York: Springer; 2010. pp. 17–52.

Salloum NC, Gott BM, Conway CR. Sustained remission in patients with treatment-resistant depression receiving vagal nerve stimulation: a case series. Brain Stimul. 2017;10:997–1000. PubMed

Scheperjans F, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30:350–358. PubMed

Shaw W. Clostridia bacteria in the gastrointestinal tract as a major cause of depression and other neuropsychiatric disorders. In: Greenblatt J, Brogan K, editors. Integrative psychiatry for depression: redefining models for assessment, treatment, and prevention of mood disorders. New York: Taylor and Francis; 2016. pp. 31–48.

Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol. 2016;32:96–102. PubMed

Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV. [Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12] Prikl Biokhim Mikrobiol. 2009;45:550–554. PubMed

Singh SK, Pal A. Biophysical approaches to the study of LeuT, a prokaryotic homolog of neurotransmitter sodium symporters. Methods Enzymol. 2015;557:167–198. PubMed PMC

Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun. 2017;482:388–398. PubMed PMC

Snyder C, Kream RM, Ptacek R, Stefano GB. Mitochondria, microbiome and their potential psychiatric modulation. Autism Open Access. 2015;5:144.

Sonetti D, Ottaviani E, Bianchi F, Rodriquez M, Stefano ML, Scharrer B, Stefano GB. Microglia in invertebrate ganglia. Proc Natl Acad Sci USA. 1994;91:9180–9184. PubMed PMC

Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459–6465. PubMed PMC

Stefano GB. Conformational matching: a possible evolutionary force in the evolvement of signal systems. In: Stefano GB, editor. CRC Handbook of comparative opioid and related neuropeptide mechanisms. Boca Raton: CRC Press Inc.; 1986. pp. 271–277.

Stefano GB, Kream RM. Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (review) Int J Mol Med. 2007;20:837–841. PubMed

Stefano GB, Kream RM. Dopamine, morphine, and nitric oxide: an evolutionary signaling triad CNS. Neurosci Ther. 2010;16:e124–e137. PubMed PMC

Stefano GB, Kream R. Psychiatric disorders involving mitochondrial processes. Psychol Obs. 2015;1:1–6.

Stefano GB, Kream R. Evolutionary perspective on microglial/neuronal coupling with special relevance to psychiatric illnesses. J Psychiatr. 2015;18:329.

Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy in human health and disease. Biomed Rep. 2016;4:259–262. PubMed PMC

Stefano GB, Catapane EJ, Aiello E. Dopaminergic agents: influence on serotonin in the molluscan nervous system. Science. 1976;194:539–541. PubMed

Stefano GB, Bilfinger TV, Fricchione GL. The immune neuro-link and the macrophage: Postcardiotomy delirium. HIV-associated dementia psychiatry. Prog Neurobiol. 1994;42:475–488. PubMed

Stefano GB, Samuel J, Kream RM. Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med Sci Monit. 2017;23:101–106. PubMed PMC

Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–294. PubMed PMC

Tobe EH. Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr Dis Treat. 2013;9:567–573. PubMed PMC

Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. The gut microbiome in human neurological disease: a review. Ann Neurol. 2017;81:369–382. PubMed

Tulstrup MV, et al. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PLoS One. 2015;10:e0144854. PubMed PMC

Unger MM, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016;32:66–72. PubMed

Verheijden S, De Schepper S, Boeckxstaens GE. Neuron-macrophage crosstalk in the intestine: a “microglia” perspective. Front Cell Neurosci. 2015;9:403. PubMed PMC

Vermeiren Y, De Deyn PP. Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: the locus coeruleus story. Neurochem Int. 2017;102:22–32. PubMed

Villaran RF, et al. Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson’s disease. J Neurochem. 2010;114:1687–1700. PubMed

Wallace CJ, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatr. 2017;16:14. PubMed PMC

Wallace CJ, Milev R. Erratum to: the effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatr. 2017;16:18. PubMed PMC

Wells JM, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol. 2017;312:G171–G193. PubMed PMC

Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta. 2010;1802:29–44. PubMed

Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. PubMed PMC

Wu GD, Bushmanc FD, Lewis JD. Diet, the human gut microbiota and IBD. Anaerobe. 2013;24:117–120. PubMed

Yakunina N, Kim SS, Nam EC. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. 2017;20:290–300. PubMed

Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl− dependent neurotransmitter transporters. Nature. 2005;437:215–223. PubMed

Yano JM, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276. PubMed PMC

Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the Gut. Immunity. 2017;46:910–926. PubMed PMC

Zheng P, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatr. 2016;21:786–796. PubMed

Zhou L, Foster JA. Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat. 2015;11:715–723. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae

. 2022 ; 18 () : 2229-2237. [epub] 20221005

Mitochondrial DNA Heteroplasmy as an Informational Reservoir Dynamically Linked to Metabolic and Immunological Processes Associated with COVID-19 Neurological Disorders

. 2022 Jan ; 42 (1) : 99-107. [epub] 20210612

SARS-CoV-2, Trait Anxiety, and the Microbiome

. 2021 ; 12 () : 720082. [epub] 20210908

Interoception, Trait Anxiety, and the Gut Microbiome: A Cognitive and Physiological Model

. 2021 May 04 ; 27 () : e931962. [epub] 20210504

Endocrine disruptors and gut microbiome interactions

. 2020 Sep 30 ; 69 (Suppl 2) : S211-S223.

Behaviorally-Mediated Entrainment of Whole-Body Metabolic Processes: Conservation and Evolutionary Development of Mitochondrial Respiratory Complexes

. 2019 Dec 06 ; 25 () : 9306-9309. [epub] 20191206

Chromosomal Processes in Mind-Body Medicine: Chronic Stress, Cell Aging, and Telomere Length

. 2018 Sep 17 ; 24 () : 134-140. [epub] 20180917

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...