SARS-CoV-2, Trait Anxiety, and the Microbiome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34566721
PubMed Central
PMC8455943
DOI
10.3389/fpsyt.2021.720082
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, anxiety disorders, brain, cognition, default mode network, glutamic acid, immunity, microbiota,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
During the COVID-19 pandemic, research on the relationships between the virus and its human host has become fundamental to understand this pathology and its effects. Attaining this profound understanding is critical for the effective containment and treatment of infections caused by the virus. In this review, we present some possible mechanisms by which psychopathological symptoms emerge following viral infections of the central nervous system (CNS). These proposed mechanisms are based on microbial communication and the induced priming of microglial antibody activation within the CNS through Toll-like receptor signaling. In this process, chronic microglial activation causes increased glutamate release in virally-altered, high-density neuronal structures, thereby modulating cognitive networks and information integration processes. This modulation, in turn, we suggest, affects the accuracy of sensory integration and connectivity of major control networks, such as the default mode network. The chronic activation of immunological responses and neurochemical shifts toward an elevated glutamate/gamma-aminobutyric acid ratio lead to negative reinforcement learning and suboptimal organismic functioning, for example, maintaining the body in an anxious state, which can later become internalized as trait anxiety. Therefore, we hypothesize that the homeostatic relationship between host, microbiome, and virome, would be decisive in determining the efficiency of subsequent immunological responses, disease susceptibility, and long-term psychopathological effects of diseases that impact the CNS, such as the COVID-19.
Zobrazit více v PubMed
Bagga D, Aigner CS, Reichert JL, Cecchetto C, Fischmeister FPS, Holzer P, et al. . Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. Eur J Nutr. (2019) 58:1821–27. 10.1007/s00394-018-1732-z PubMed DOI PMC
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. (2018) 1693(Pt B):128–33. 10.1016/j.brainres.2018.03.015 PubMed DOI PMC
Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory. (2018) 13:44–65. 10.1007/s13752-017-0287-1 DOI
Szcześniak D, Gładka A, Misiak B, Cyran A, Rymaszewska J. The SARS-CoV-2 and mental health: From biological mechanisms to social consequences. Prog Neuropsychopharmacol Biol Psychiatry. (2021) 104:110046. 10.1016/j.pnpbp.2020.110046 PubMed DOI PMC
Taquet M, Luciano S, Geddes JR, Harrison PJ. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. (2021) 8:130–40. 10.1016/S2215-0366(20)30462-4 PubMed DOI PMC
Nakamura ZM, Nash RP, Laughon SL, Rosenstein DL. Neuropsychiatric Complications of COVID-19. Curr Psychiatry Rep. (2021) 23:25. 10.1007/s11920-021-01237-9 PubMed DOI PMC
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother. (2021) 135:111200. 10.1016/j.biopha.2020.111200 PubMed DOI PMC
Ganci M, Suleyman E, Butt H, Ball M. The role of the brain–gut–microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders. Brain Behav. (2019) 9:e01408. 10.1002/brb3.1408 PubMed DOI PMC
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. (2015) 28:203–9. PubMed PMC
Robinson CM, Pfeiffer JK. Viruses and the microbiota. Annu Rev Virol. (2014) 1:55–69. 10.1146/annurev-virology-031413-085550 PubMed DOI PMC
Griffin D. Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol. (2003) 3:493–502. 10.1038/nri1105 PubMed DOI PMC
Spiljar M, Merkler D, Trajkovski M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol. (2017) 8:1353. 10.3389/fimmu.2017.01353 PubMed DOI PMC
Garber C, Soung A, Vollmer LL, Kanmogne M, Last A, Brown J, et al. . T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat Neurosci. (2019) 22:1276–1288. 10.1038/s41593-019-0427-y PubMed DOI PMC
Beul SF, Hilgetag CC. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. Neuroimage. (2019) 189:777–92. 10.1016/j.neuroimage.2019.01.010 PubMed DOI
Moran JM, Kelley WM, Heatherton TF. What can the organization of the brain's default mode network tell us about self-knowledge? Front Hum Neurosci. (2013) 7:391. 10.3389/fnhum.2013.00391 PubMed DOI PMC
Büttiker P, Weissenberger S, Ptacek R, Stefano GB. Interoception, trait anxiety, and the gut microbiome: A cognitive and physiological model. Med Sci Monit. (2021) 27:e931962. 10.12659/MSM.931962 PubMed DOI PMC
Gu S, Cieslak M, Baird B, Muldoon SF, Grafton ST, Pasqualetti F, et al. . The energy landscape of neurophysiological activity implicit in brain network structure. Sci Rep. (2018) 8:2507. 10.1038/s41598-018-20123-8 PubMed DOI PMC
Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, et al. . Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. (2021) 595:565–71. 10.1038/s41586-021-03710-0 PubMed DOI PMC
Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. (2017) 12:1833. 10.1093/scan/nsx060 PubMed DOI PMC
Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol. (2013) 521:3371–88. 10.1002/cne.23368 PubMed DOI PMC
Stefano GB, Bilfinger TV, Fricchione GL. The immune-neuro-link and the macrophage: postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog Neurobiol. (1994) 42:475–88. 10.1016/0301-0082(94)90048-5 PubMed DOI
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gutbrain axis. J Neuroinflammation. (2019) 16:53. 10.1186/s12974-019-1434-3 PubMed DOI PMC
Stefano GB. The evolvement of signal systems: conformational matching a determining force stabilizing families of signal molecules. Comp Biochem Physiol C Comp Pharmacol Toxicol. (1988) 90:287–94. 10.1016/0742-8413(88)90001-1 PubMed DOI
Li N, Ma WT, Pang M, Fan QL, Hua JL. The commensal microbiota and viral infection: a comprehensive review. Front Immunol. (2019) 10:1551. 10.3389/fimmu.2019.01551 PubMed DOI PMC
Brown DG, Soto R, Yandamuri S, Stone C, Dickey L, Gomes-Neto JC, et al. . The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. Elife. (2019) 8:e47117. 10.7554/eLife.47117.022 PubMed DOI PMC
Stefano GB, Pilonis N, Ptacek R, Raboch J, Vnukova M, Kream RM. Gut, microbiome, and brain regulatory axis: relevance to neurodegenerative and psychiatric disorders. Cell Mol Neurobiol. (2018) 38:1197–206. 10.1007/s10571-018-0589-2 PubMed DOI PMC
Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. . CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. (2018) 21:1380–91. 10.1038/s41593-018-0227-9 PubMed DOI PMC
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. (2018) 12:49. 10.3389/fnins.2018.00049 PubMed DOI PMC
Tisoncik-Go J, Gale MJ. Microglia in memory decline from zika virus and west nile virus infection. Trends Neurosci. (2019) 42:757–9. 10.1016/j.tins.2019.08.009 PubMed DOI PMC
Zidovec-Lepej S, Vilibic-Cavlek T, Barbic L, Ilic M, Savic V, Tabain I. Antiviral cytokine response in neuroinvasive and non-neuroinvasive west nile virus infection. Viruses. (2021) 13:342. 10.3390/v13020342 PubMed DOI PMC
De Chiara G, Piacentini R, Fabiani M, Mastrodonato A, Marcocci ME, Limongi D, et al. . Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. (2019) 15:e1007617. 10.1371/journal.ppat.1007617 PubMed DOI PMC
Johansson A, Mohamed MS, Moulin TC, Schiöth HB. Neurological manifestations of COVID-19: A comprehensive literature review and discussion of mechanisms. J Neuroimmunol. (2021) 358:577658. 10.1016/j.jneuroim.2021.577658 PubMed DOI PMC
Crunfli F, Carregari VC, Veras FP, Vendramini PH, Valença AGF, Antunes ASLM, et al. . SARS-CoV-2 infects brain astrocytes of COVID-19 patients and impairs neuronal viability. medRxiv [preprint]. (2020). 10.1101/2020.10.09.20207464 DOI
Matschke J, Lutgehetmann M, Hagel C, Sperhake JP, Schroder AS, Edler C, et al. . Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. (2020) 19:919–929. 10.1016/S1474-4422(20)30308-2 PubMed DOI PMC
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, et al. . Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. (2021) 218:e20202135. 10.1084/jem.20202135 PubMed DOI PMC
Stefano GB, Ptacek R, Ptackova H, Martin A, Kream RM. Selective neuronal mitochondrial targeting in SARS-CoV-2 infection affects cognitive processes to induce 'brain fog' and results in behavioral changes that favor viral survival. Med Sci Monit. (2021) 27:e930886. 10.12659/MSM.930886 PubMed DOI PMC
Catania F, Krohs U, Chittò M, Ferro D, Ferro K, Lepennetier G, et al. . The hologenome concept: we need to incorporate function. Theory Biosci. (2017) 136:89–98. 10.1007/s12064-016-0240-z PubMed DOI
Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH. Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci USA. (2010) 107:15927–32. 10.1073/pnas.1010356107 PubMed DOI PMC
Fischer D, Threlkeld ZD, Bodien YG, Kirsch JE, Huang SY, Schaefer PW, et al. . Intact brain network function in an unresponsive patient with COVID-19. Ann Neurol. (2020) 88:851–4. 10.1002/ana.25838 PubMed DOI PMC
Wang X, Foryt P, Ochs R, Chung JH, Wu Y, Parrish T, Ragin AB. Abnormalities in resting-state functional connectivity in early human immunodeficiency virus infection. Brain Connect. (2011) 1:207–17. 10.1089/brain.2011.0016 PubMed DOI PMC
Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. (2017) 11:626. 10.2174/97816810853261170401 PubMed DOI PMC
Xu X, Yuan H, Lei X. Activation and connectivity within the default mode network contribute independently to future-oriented thought. Sci Rep. (2016) 6:21001. 10.1038/srep21001 PubMed DOI PMC
Haroon E, Miller A, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. (2017) 42:193–215. 10.1038/npp.2016.199 PubMed DOI PMC
El-Ansary A, Bacha AB, Bjørklund G, Al-Orf N, Bhat RS, Moubayed N, Abed K. Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin. Metab Brain Dis. (2018) 33:1155–64. 10.1007/s11011-018-0212-8 PubMed DOI
Wang J, Wang F, Mai D, Qu S. Molecular mechanisms of glutamate toxicity in parkinson's disease. Front Neurosci. (2020) 14:585584. 10.3389/fnins.2020.585584 PubMed DOI PMC
Raymond JG, Steele JD, Seriès P. Modeling trait anxiety: from computational processes to personality. Front Psychiatry. (2017) 8:1. 10.3389/fpsyt.2017.00001 PubMed DOI PMC
Hu Y, Chen X, Gu H, Yang Y. Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. J Neurosci. (2013) 33:18566–73. 10.1523/JNEUROSCI.1973-13.2013 PubMed DOI PMC
Kleckner IR, Zhang J, Touroutoglou A, Chanes L, Xia C, Simmons WK, et al. . Evidence for a Large-Scale Brain System Supporting Allostasis and Interoception in Humans. Nat Hum Behav. (2017) 1:0069. 10.1038/s41562-017-0069 PubMed DOI PMC
Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, Spreng RN, Cole MW, et al. . Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA. (2018) 115:E1598–E1607. 10.1073/pnas.1715766115 PubMed DOI PMC
Coutinho J, Gonçalves O, Fernandes SV, Soares JM, Maia L, Sampaio A. EPA-0263 – Default mode network activation in depressive and anxiety symptoms. Eur Psychiatry. (2014) 29:1. 10.1016/S0924-9338(14)77711-9 PubMed DOI
Coutinho JF, Fernandesl SV, Soares JM, Maia L, Gonçalves ÓF, Sampaio A. Default mode network dissociation in depressive and anxiety states. Brain Imaging Behav. (2016) 10:147–57. 10.1007/s11682-015-9375-7 PubMed DOI
Doya K. Metalearning and neuromodulation. Neural Netw. (2002) 15:495–506. 10.1016/S0893-6080(02)00044-8 PubMed DOI
Stefano GB, Büttiker P, Weissenberger S, Martin A, Ptacek R, Richard MK. The pathogenesis of long-term neuropsychiatric COVID-19 and the role of microglia, mitochondria, and persistent neuroinflammation: a hypothesis. Med Sci Monit. (2021) 27:e933015. 10.12659/MSM.933015 PubMed DOI PMC
Gray M, Holtmann G. Gut inflammation: more than a peripheral annoyance. Dig Dis Sci. (2017) 62:2205–7. 10.1007/s10620-017-4587-x PubMed DOI
Huang YJ, Marsland BJ, Bunyavanich S, O'Mahony L, Leung DY, Muraro A, et al. . The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American academy of allergy, asthma & immunology and the European academy of allergy and clinical immunology. J Allergy Clin Immunol. (2017) 139:1099–110. 10.1016/j.jaci.2017.02.007 PubMed DOI PMC
Hoemann K, Gendron M, Barrett LF. Mixed emotions in the predictive brain. Curr Opin Behav Sci. (2017) 15:51–7. 10.1016/j.cobeha.2017.05.013 PubMed DOI PMC
Olaimat AN, Aolymat I, Al-Holy M, Ayyash M, Abu Ghoush M, Al-Nabulsi AA, et al. . The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. NPJ Sci Food. (2020) 4:17. 10.1038/s41538-020-00078-9 PubMed DOI PMC
Mirzaei R, Attar A, Papizadeh S. The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Arch Virol. (2021) 20:1–22. 10.1007/s00705-021-05065-3 PubMed DOI PMC
Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol. (2020) 104:8089–104. 10.1007/s00253-020-10832-4 PubMed DOI PMC
Independent and sensory human mitochondrial functions reflecting symbiotic evolution
Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19
HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae