Interoception, Trait Anxiety, and the Gut Microbiome: A Cognitive and Physiological Model

. 2021 May 04 ; 27 () : e931962. [epub] 20210504

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33945520

Trait anxiety is characterized as a constant and often subliminal state that persists during daily life. Interoception is the perception of internal states and sensations, including from the autonomic nervous system. This review aims to develop a predictive model to explain the emergence, manifestations, and maintenance of trait anxiety. The model begins with the assumption that anxiety states arise from active interoceptive inference. The subsequent activation of autonomic responses results from aversive sensory encounters. A cognitive model is proposed for trait anxiety that includes the aversive sensory components from interoception, exteroception, and proprioception. A further component of the hypothesis is that repeated exposure to subliminal anxiety-evoking sensory elements can lead to an overgeneralization of this response to other inputs that are generally non-aversive. Increased uncertainty may result when predicting the sensory environment, resulting in arbitrary interoceptive anxiety responses that may be due to unjustifiable causes. Arbitrary successful or unsuccessful matching of predictions and responses reduces the individual's confidence to maintain the anxiety trait. In this review, the application of the proposed model is illustrated using gut microbial dysbiosis or imbalance of the gut microbiome.

Zobrazit více v PubMed

Thibaut F. Anxiety disorders: A review of current literature. Dialogues Clin Neurosci. 2017;19(2):87–88. PubMed PMC

Chand SP, Marwaha R. StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Anxiety. https://www.ncbi.nlm.nih.gov/books/NBK470361/

Steimer T. The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci. 2002;4(3):231–49. PubMed PMC

Sarro EC, Sullivan RM, Barr G. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA. Neuroscience. 2014;258:147–61. PubMed PMC

Endler NS, Kocovski NL. State and trait anxiety revisited. J Anxiety Disord. 2001;15(3):231–45. PubMed

Strigo IA, Craig AD. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc Lond B Biol Sci. 2016;371(1708):20160010. PubMed PMC

Spielberger CD, Sydeman SJ. State-trait anxiety inventory and state-trait anger expression inventory. In: Maruish ME, editor. The use of psychological testing for treatment planning and outcome assessment. Lawrence Erlbaum Associates; Hillsdale, NJ, USA: 1994. pp. 292–321.

Raymond JG, Steele JD, Seriès P. Modeling trait anxiety: From computational processes to personality. Front Psychiatry. 2017;8:1. PubMed PMC

Seth AK. Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci. 2013;17(11):565–73. PubMed

Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9. PubMed PMC

Van de Cruys S. Affective value in the predictive mind. In: Metzinger T, Wiese W, editors. Philosophy and predictive processing. 24MIND group; Frankfurt am Main, Germany: 2017. pp. 1–24.

Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013;36(3):181–204. PubMed

Clark A. Busting Out: Predictive brains, embodied minds, and the puzzle of the evidentiary veil. Noûs. 2016;51(4):727–53.

Barrett LF. How emotions are made: The secret life of the brain. Macmillan; London, UK: 2017. pp. 212–14.

Wilkinson S. Accounting for the phenomenology and varieties of auditory verbal hallucination within a predictive processing framework. Conscious Cogn. 2014;30:142–55. PubMed PMC

Hohwy J. The self evidencing brain. Noûs. 2016;50(2):259–85.

Seth AK, Friston KJ. Active interoceptive inference and the emotional brain. Philos Trans R Soc Lond B Biol Sci. 2016;371(1708):20160007. PubMed PMC

Barrett LF. How emotions are made: The secret life of the brain. Macmillan; London, UK: 2017. pp. 112–27.

Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 2017;12(11):1833. PubMed PMC

Hoemann K, Gendron M, Barrett LF. Mixed emotions in the predictive brain. Curr Opin Behav Sci. 2017;15:51–57. PubMed PMC

Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol. 2013;521(15):3371–88. PubMed PMC

Kleckner IR, Zhang J, Touroutoglou A, et al. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav. 2017;1:0069. PubMed PMC

Bastos AM, Usrey WM, Adams RA, et al. Canonical microcircuits for predictive coding. Neuron. 2012;76(4):695–711. PubMed PMC

Bogacz R. A tutorial on the free-energy framework for modelling perception and learning. J Math Psychol. 2017;76:198–211. PubMed PMC

Friston K. The free-energy principle: A rough guide to the brain? Trends Cogn Sci. 2009;13(7):293–301. PubMed

Abbott LF, Varela JA, Sen K, Nelson SB. Synaptic depression and cortical gain control. Science. 1997;275(5297):220–24. PubMed

Ben Achour S, Pascual O. Glia: The many ways to modulate synaptic plasticity. Neurochem Int. 2010;57(4):440–45. PubMed

Rothman JS, Cathala L, Steuber V, Silver RA. Synaptic depression enables neuronal gain control. Nature. 2009;457(7232):1015–18. PubMed PMC

Griffin JD, Fletcher PC. Predictive processing, source monitoring, and psychosis. Annu Rev Clin Psychol. 2017;13:265–89. PubMed PMC

Doya K. Metalearning and neuromodulation. Neural Netw. 2002;15(4–6):495–506. PubMed

Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016;19(3):404–13. PubMed PMC

Zampeli E, Tiligada E. The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol. 2009;157(1):24–33. PubMed PMC

Critchley HD, Garfinkel SN. Interoception and emotion. Curr Opin Psychol. 2017;17:7–14. PubMed

Serafim KR, Kishi MS, Canto-de-Souza A, Mattioli R. H1 but not H2 histamine antagonist receptors mediate anxiety-related behaviors and emotional memory deficit in mice subjected to elevated plus-maze testing. Braz J Med Biol Res. 2013;46(5):440–46. PubMed PMC

Huang YJ, Marsland BJ, Bunyavanich S, et al. The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017;139(4):1099–110. PubMed PMC

Grammatikos AP, Tsokos GC. Immunodeficiency and autoimmunity: Lessons from systemic lupus erythematosus. Trends Mol Med. 2012;18(2):101–8. PubMed PMC

Gray M, Holtmann G. Gut inflammation: More than a peripheral annoyance. Dig Dis Sci. 2017;62(9):2205–7. PubMed

Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–33. PubMed PMC

Friston K. The free-energy principle: A unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38. PubMed

Laurent PA. The emergence of saliency and novelty responses from Reinforcement Learning principles. Neural Netw. 2008;21(10):1493–99. PubMed PMC

Stefano GB, Ptacek R, Raboch J, Kream RM. Microbiome: A potential component in the origin of mental disorders. Med Sci Monit. 2017;23:3039–43. PubMed PMC

Stefano GB, Pilonis N, Ptacek R, et al. Review. Gut, microbiome, and brain regulatory axis: Relevance to neurodegenerative and psychiatric disorders. Cell Mol Neurobiol. 2018;38(6):1197–206. PubMed PMC

Ganci M, Suleyman E, Butt H, Ball M. The role of the brain-gut-microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders. Brain Behav. 2019;9(11):e01408. PubMed PMC

Bagga D, Aigner CS, Reichert JL, et al. Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. Eur J Nutr. 2019;58(5):1821–27. PubMed PMC

Eldar E, Cohen JD, Niv Y. The effects of neural gain on attention and learning. Nat Neurosci. 2013;16(8):1146–53. PubMed PMC

Corey G. Theory and practice of counseling and psychotherapy. 9th ed. Brooks/Cole; Belmont, CA, USA: 2013. pp. 287–332.

Kring AM, Johnson SL, Davison GC, Neale JM. Abnormal psychology. 11th ed. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2010. pp. 119–54.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...