Interoception, Trait Anxiety, and the Gut Microbiome: A Cognitive and Physiological Model
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33945520
PubMed Central
PMC8106255
DOI
10.12659/msm.931962
PII: 931962
Knihovny.cz E-zdroje
- MeSH
- dysbióza patofyziologie MeSH
- interocepce fyziologie MeSH
- kognice fyziologie MeSH
- lidé MeSH
- střevní mikroflóra fyziologie MeSH
- úzkost patofyziologie MeSH
- úzkostné poruchy patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Trait anxiety is characterized as a constant and often subliminal state that persists during daily life. Interoception is the perception of internal states and sensations, including from the autonomic nervous system. This review aims to develop a predictive model to explain the emergence, manifestations, and maintenance of trait anxiety. The model begins with the assumption that anxiety states arise from active interoceptive inference. The subsequent activation of autonomic responses results from aversive sensory encounters. A cognitive model is proposed for trait anxiety that includes the aversive sensory components from interoception, exteroception, and proprioception. A further component of the hypothesis is that repeated exposure to subliminal anxiety-evoking sensory elements can lead to an overgeneralization of this response to other inputs that are generally non-aversive. Increased uncertainty may result when predicting the sensory environment, resulting in arbitrary interoceptive anxiety responses that may be due to unjustifiable causes. Arbitrary successful or unsuccessful matching of predictions and responses reduces the individual's confidence to maintain the anxiety trait. In this review, the application of the proposed model is illustrated using gut microbial dysbiosis or imbalance of the gut microbiome.
Zobrazit více v PubMed
Thibaut F. Anxiety disorders: A review of current literature. Dialogues Clin Neurosci. 2017;19(2):87–88. PubMed PMC
Chand SP, Marwaha R. StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Anxiety. https://www.ncbi.nlm.nih.gov/books/NBK470361/
Steimer T. The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci. 2002;4(3):231–49. PubMed PMC
Sarro EC, Sullivan RM, Barr G. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA. Neuroscience. 2014;258:147–61. PubMed PMC
Endler NS, Kocovski NL. State and trait anxiety revisited. J Anxiety Disord. 2001;15(3):231–45. PubMed
Strigo IA, Craig AD. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc Lond B Biol Sci. 2016;371(1708):20160010. PubMed PMC
Spielberger CD, Sydeman SJ. State-trait anxiety inventory and state-trait anger expression inventory. In: Maruish ME, editor. The use of psychological testing for treatment planning and outcome assessment. Lawrence Erlbaum Associates; Hillsdale, NJ, USA: 1994. pp. 292–321.
Raymond JG, Steele JD, Seriès P. Modeling trait anxiety: From computational processes to personality. Front Psychiatry. 2017;8:1. PubMed PMC
Seth AK. Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci. 2013;17(11):565–73. PubMed
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9. PubMed PMC
Van de Cruys S. Affective value in the predictive mind. In: Metzinger T, Wiese W, editors. Philosophy and predictive processing. 24MIND group; Frankfurt am Main, Germany: 2017. pp. 1–24.
Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013;36(3):181–204. PubMed
Clark A. Busting Out: Predictive brains, embodied minds, and the puzzle of the evidentiary veil. Noûs. 2016;51(4):727–53.
Barrett LF. How emotions are made: The secret life of the brain. Macmillan; London, UK: 2017. pp. 212–14.
Wilkinson S. Accounting for the phenomenology and varieties of auditory verbal hallucination within a predictive processing framework. Conscious Cogn. 2014;30:142–55. PubMed PMC
Hohwy J. The self evidencing brain. Noûs. 2016;50(2):259–85.
Seth AK, Friston KJ. Active interoceptive inference and the emotional brain. Philos Trans R Soc Lond B Biol Sci. 2016;371(1708):20160007. PubMed PMC
Barrett LF. How emotions are made: The secret life of the brain. Macmillan; London, UK: 2017. pp. 112–27.
Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci. 2017;12(11):1833. PubMed PMC
Hoemann K, Gendron M, Barrett LF. Mixed emotions in the predictive brain. Curr Opin Behav Sci. 2017;15:51–57. PubMed PMC
Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol. 2013;521(15):3371–88. PubMed PMC
Kleckner IR, Zhang J, Touroutoglou A, et al. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav. 2017;1:0069. PubMed PMC
Bastos AM, Usrey WM, Adams RA, et al. Canonical microcircuits for predictive coding. Neuron. 2012;76(4):695–711. PubMed PMC
Bogacz R. A tutorial on the free-energy framework for modelling perception and learning. J Math Psychol. 2017;76:198–211. PubMed PMC
Friston K. The free-energy principle: A rough guide to the brain? Trends Cogn Sci. 2009;13(7):293–301. PubMed
Abbott LF, Varela JA, Sen K, Nelson SB. Synaptic depression and cortical gain control. Science. 1997;275(5297):220–24. PubMed
Ben Achour S, Pascual O. Glia: The many ways to modulate synaptic plasticity. Neurochem Int. 2010;57(4):440–45. PubMed
Rothman JS, Cathala L, Steuber V, Silver RA. Synaptic depression enables neuronal gain control. Nature. 2009;457(7232):1015–18. PubMed PMC
Griffin JD, Fletcher PC. Predictive processing, source monitoring, and psychosis. Annu Rev Clin Psychol. 2017;13:265–89. PubMed PMC
Doya K. Metalearning and neuromodulation. Neural Netw. 2002;15(4–6):495–506. PubMed
Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016;19(3):404–13. PubMed PMC
Zampeli E, Tiligada E. The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol. 2009;157(1):24–33. PubMed PMC
Critchley HD, Garfinkel SN. Interoception and emotion. Curr Opin Psychol. 2017;17:7–14. PubMed
Serafim KR, Kishi MS, Canto-de-Souza A, Mattioli R. H1 but not H2 histamine antagonist receptors mediate anxiety-related behaviors and emotional memory deficit in mice subjected to elevated plus-maze testing. Braz J Med Biol Res. 2013;46(5):440–46. PubMed PMC
Huang YJ, Marsland BJ, Bunyavanich S, et al. The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017;139(4):1099–110. PubMed PMC
Grammatikos AP, Tsokos GC. Immunodeficiency and autoimmunity: Lessons from systemic lupus erythematosus. Trends Mol Med. 2012;18(2):101–8. PubMed PMC
Gray M, Holtmann G. Gut inflammation: More than a peripheral annoyance. Dig Dis Sci. 2017;62(9):2205–7. PubMed
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–33. PubMed PMC
Friston K. The free-energy principle: A unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38. PubMed
Laurent PA. The emergence of saliency and novelty responses from Reinforcement Learning principles. Neural Netw. 2008;21(10):1493–99. PubMed PMC
Stefano GB, Ptacek R, Raboch J, Kream RM. Microbiome: A potential component in the origin of mental disorders. Med Sci Monit. 2017;23:3039–43. PubMed PMC
Stefano GB, Pilonis N, Ptacek R, et al. Review. Gut, microbiome, and brain regulatory axis: Relevance to neurodegenerative and psychiatric disorders. Cell Mol Neurobiol. 2018;38(6):1197–206. PubMed PMC
Ganci M, Suleyman E, Butt H, Ball M. The role of the brain-gut-microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders. Brain Behav. 2019;9(11):e01408. PubMed PMC
Bagga D, Aigner CS, Reichert JL, et al. Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. Eur J Nutr. 2019;58(5):1821–27. PubMed PMC
Eldar E, Cohen JD, Niv Y. The effects of neural gain on attention and learning. Nat Neurosci. 2013;16(8):1146–53. PubMed PMC
Corey G. Theory and practice of counseling and psychotherapy. 9th ed. Brooks/Cole; Belmont, CA, USA: 2013. pp. 287–332.
Kring AM, Johnson SL, Davison GC, Neale JM. Abnormal psychology. 11th ed. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2010. pp. 119–54.
Independent and sensory human mitochondrial functions reflecting symbiotic evolution
HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae
SARS-CoV-2, Trait Anxiety, and the Microbiome