Microbiome: A Potential Component in the Origin of Mental Disorders

. 2017 Jun 21 ; 23 () : 3039-3043. [epub] 20170621

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28636585

It is not surprising to find microbiome abnormalities present in psychiatric disorders such as depressive disorders, bipolar disorders, etc. Evolutionary pressure may provide an existential advantage to the host eukaryotic cells in that it survives in an extracellular environment containing non-self cells (e.g., bacteria). This phenomenon is both positive and negative, as with other intercellular processes. In this specific case, the phenomenal amount of information gained from combined bacterial genome could enhance communication between self and non-self cells. This can be coupled to both pathological processes and healthy ones. In this review, we chose to examine potential associated disorders that may be coupled to the microbiome, from the perspective of their bidirectional communication with eukaryotic cells in the gut. Cognition, being the newest neural networking functionality to evolve, consumes a good amount of organismic energy, 30% of which arises from the gut flora. Furthermore, the mammalian gut is highly innervated and has a highly developed immune component, reflecting brain complexity. The brain-gut axis uses similar molecular messengers as the brain, which affects bacterial processes as well. Thus, any modification of normal bacterial processes may manifest itself in altered behavior/cognition, originating from the gut. The origin of some disorders associated with this bidirectional communication may be harnessed to restore normal functioning.

Zobrazit více v PubMed

Esch T, Stefano GB. Proinflammation: A common denominator or initiator of different pathophysiological disease processes. Med Sci Monit. 2002;8(5):HY1–9. PubMed

Esch T, Stefano GB, Fricchione GL, Benson H. The role of stress in neurodegenerative diseases and mental disorders. Neuro Endocrinol Lett. 2002;23(3):199–208. PubMed

Stefano GB, Kream RM. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit. 2015;21:1478–84. PubMed PMC

Snodgrass RG, Boss M, Zezina E, et al. Hypoxia potentiates palmitate-induced pro-inflammatory activation of primary human macrophages. J Biol Chem. 2016;291(1):413–24. PubMed PMC

Yang C, Jiang L, Zhang H, et al. Analysis of hypoxia-induced metabolic reprogramming. Methods Enzymol. 2014;542:425–55. PubMed

Stefano GB, Bilfinger TV, Fricchione GL. The immune neuro-link and the macrophage: Postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog Neurobiol. 1994;42:475–88. PubMed

Stefano GB, Scharrer B. Endogenous morphine and related opiates, a new class of chemical messengers. Adv Neuroimmunol. 1994;4:57–68. PubMed

Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786–96. PubMed

Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–95. PubMed PMC

Makman MH, Stefano GB. Neuroregulatory mechanisms in aging. Oxford, England: Pergamon Press; 1993.

Stefano GB, Kream RM. Aging reversal and healthy longevity is in reach: Dependence on mitochondrial DNA Heteroplasmy as a key molecular target. Med Sci Monit. 2017;23:2732–35. PubMed PMC

Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA. 2006;103(8):2653–58. PubMed PMC

Yu T, Jhun BS, Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal. 2011;14(3):425–37. PubMed PMC

Simon EJ, Vanpraag D. Selective inhibition of synthesis of ribosomal RNA in Escherichia coli by levorphanol. Proc Natl Acad Sci USA. 1964;51:1151–58. PubMed PMC

Simon EJ, Vanpraag D. Inhibition of RNA synthesis in Escherichia coli by levorphanol. Proc Natl Acad Sci USA. 1964;51:877–83. PubMed PMC

Zucker-Franklin D, Elsbach P, Simon EJ. The effect of morphine analog levorphanol on phagocytosing leukocytes. Lab Invest. 1971;25:415–21. PubMed

Wurster N, Elsbach P, Rand J, Simon EJ. Effects of levorphanol on phospholipid metabolism and composition in Escherichia coli. Biochim Biophys Acta. 1971;248(2):282–92. PubMed

Simon EJ, Hiller JM, Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci USA. 1973;70(7):1947–49. PubMed PMC

Persky-Brosh S, Young JR, Holland MJ, Simon EJ. Effect of morphine analogues on chemotaxis in Escherichia coli. J Gen Microbiol. 1978;107(1):53–58. PubMed

Stefano GB, Zhu W, Cadet P, Mantione K. Morphine enhances nitric oxide release in the mammalian gastrointestinal tract via the m3 opiate receptor subtype: A hormonal role for endogenous morphine. J Physiolo Pharmacol. 2004;55(1 Pt 2):279–88. PubMed

Kream RM, Stefano GB. De novo biosynthesis of morphine in animal cells: An evidence-based model. Med Sci Monit. 2006;12(10):RA207–19. PubMed

Kream RM, Sheehan M, Cadet P, et al. Persistence of evolutionary memory: Primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling. Med Sci Monit. 2007;13(12):SC5–6. PubMed

Stefano GB, Goumon Y, Casares F, et al. Endogenous morphine. Trends Neurosci. 2000;9:436–42. PubMed

Kream RM, Stefano GB, Rtacek R. Psychiatric implications of endogenous morphine: Up-to-date review. Folia Biol (Praha) 2010;56:231–41. PubMed

Kream RM, Mantione KJ, Sheehan M, Stefano GB. Morphine’s chemical messenger status in animals. Activitas Nervosa Superior Rediviva. 2009;51(1–2):153–61.

Mantione KJ, Cadet P, Zhu W, et al. Endogenous morphine signaling via nitric oxide regulates the expression of CYP2D6 and COMT: Autocrine/paracrine feedback inhibition. Addict Biol. 2008;13(1):118–23. PubMed

Stefano GB, Cadet P, Kream RM, Zhu W. The presence of endogenous morphine signaling in animals. Neurochem Res. 2008;33(10):1933–39. PubMed

Stefano GB, Ptacek R, Kuzelova H, Kream RM. Endogenous morphine: Up-to-date review 2011. Folia Biol (Praha) 2012;58(2):49–56. PubMed

Stefano GB, Mantione KJ, Capellan L, et al. Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr. 2015;47(5):409–17. PubMed

Snyder C, Kream RM, Ptacek R, Stefano GB. Mitochondria, microbiome and their potential psychiatric modulation. Autism Open Access. 2015;5:2.

Ptacek R, Brejlova D, Domkarova L, et al. Autism – a multifaceted diffuse pathology. J Psychiatry. 2015;18:1000315.

Stefano GB, Kream RM. Glycolytic coupling to mitochondrial energy production ensures survival in an oxygen rich environment. Med Sci Monit. 2016;22:2571–75. PubMed PMC

Stefano GB, Challenger S, Kream RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr. 2016;55(8):2339–45. PubMed PMC

Stefano GB. Cognition regulated by emotional decision making. Med Sci Monit Basic Res. 2016;22:1–5. PubMed PMC

Kream RM, Stefano GB. Endogenous morphine and nitric oxide coupled regulation of mitochondrial processes. Med Sci Monit. 2009;15(12):RA263–68. PubMed

Stefano GB, Kream RM. Reciprocal regulation of cellular nitric oxide formation by nitric oxide synthase and nitrite reductases. Med Sci Monit. 2011;17(10):RA221–26. PubMed PMC

Stefano GB, Kream RM. Nitric oxide regulation of mitochondrial processes: Commonality in medical disorders. Ann Transplant. 2015;20:402–7. PubMed

Stefano GB, Kream RM. Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (Review) Int J Mol Med. 2016;37:547–55. PubMed PMC

Stefano GB, Samuel J, Kream RM. Antibiotics may trigger mitochondrial dysfunction inducing psychiatric disorders. Med Sci Monit. 2017;23:101–6. PubMed PMC

Betina V. The use of antibiotics for studies of morphogenesis and differentiation in microorganisms. Folia Microbiol (Praha) 1980;25(6):505–23. PubMed

Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy in human health and disease. Biomed Rep. 2016;4:259–62. PubMed PMC

Stefano GB, Bjenning C, Wang F, et al. In: Mitochondrial heteroplasmy, in mitochondria in cardiovascular medicine. Santulli G, editor. Springer-Nature; 2017. [in press]

Abouesh A, Stone C, Hobbs WR. Antimicrobial-induced mania (antibiomania): A review of spontaneous reports. J Clin Psychopharmacol. 2002;22(1):71–81. PubMed

Ben-Chetrit E, Rothstein N, Munter G. Ciprofloxacin-induced psychosis. Antimicrob Agents Chemother. 2013;57(8):4079. PubMed PMC

Mulhall JP, Bergmann LS. Ciprofloxacin-induced acute psychosis. Urology. 1995;46(1):102–3. PubMed

Reeves RR. Ciprofloxacin-induced psychosis. Ann Pharmacother. 1992;26(7–8):930–31. PubMed

Murray GK, Corlett PR, Clark L, et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry. 2008;13(3):239, 267–76. PubMed PMC

Khandheria M, Snook E, Thomas C. Psychotic episode secondary to metronidazole use. Gen Hosp Psychiatry. 2014;36(2):231e3–4. PubMed

Koul S, Bhan-Kotwal S, Jenkins HS, Carmaciu CD. Organic psychosis induced by ofloxacin and metronidazole. Br J Hosp Med (Lond) 2009;70(4):236–37. PubMed

Stuhec M. Trimethoprim-sulfamethoxazole-related hallucinations. Gen Hosp Psychiatry. 2014;36(2):230e7–8. PubMed

Weis S, Karagulle D, Kornhuber J, Bayerlein K. Cotrimoxazole-induced psychosis: a case report and review of literature. Pharmacopsychiatry. 2006;39(6):236–37. PubMed

Cummings JL, Barritt CF, Horan M. Delusions induced by procaine penicillin: Case report and review of the syndrome. Int J Psychiatry Med. 1986;16(2):163–68. PubMed

Dinca EB, Skinner A, Dinca RV, Tudose C. The dangers of gastritis: A case of clarithromycin-associated brief psychotic episode. J Nerv Ment Dis. 2015;203(2):149–51. PubMed

Jimenez P, Navarro-Ruiz A, Sendra P, et al. Hallucinations with therapeutic doses of clarithromycin. Int J Clin Pharmacol Ther. 2002;40(1):20–22. PubMed

Stefano GB, Kream R. Psychiatric disorders involving mitochondrial processes. Psychology Observer. 2015;1:1–6.

Abildgaard A, Elfving B, Hokland M, et al. Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology. 2017;79:40–48. PubMed

Lin P, Ding B, Feng C, et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord. 2017;207:300–4. PubMed

Majamaa H, Isolauri E. Probiotics: A novel approach in the management of food allergy. J Allergy Clin Immunol. 1997;99(2):179–85. PubMed

Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc. 2014;89(1):107–14. PubMed

Kelly JR, Borre Y, O’Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18. PubMed

Kelly CR, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection: A randomized trial. Ann Intern Med. 2016;165(9):609–16. PubMed PMC

Evrensel A, Ceylan ME. Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci. 2016;14(3):231–37. PubMed PMC

Evrensel A, Ceylan ME. [The future of fecal microbiota transplantation method in neuropsychiatric disorders]. Turk Psikiyatri Derg. 2016;27(1):71–72. [in Turkish] PubMed

Dinan TG, Cryan JF. Microbes, immunity, and behavior: Psychoneuro-immunology meets the microbiome. Neuropsychopharmacology. 2017;42(1):178–92. PubMed PMC

Borre YE, Moloney RD, Clarke G, et al. The impact of microbiota on brain and behavior: Mechanisms & therapeutic potential. Adv Exp Med Biol. 2014;817:373–403. PubMed

Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–95. PubMed PMC

Zhou L, Foster JA. Psychobiotics and the gut-brain axis: In the pursuit of happiness. Neuropsychiatr Dis Treat. 2015;11:715–23. PubMed PMC

Kosikowska U, Biernasiuk A, Korona-Glowniak I, et al. The association of chronic hepatitis C with respiratory microbiota disturbance on the basis of decreased Haemophilus Spp. colonization. Med Sci Monit. 2016;22:625–32. PubMed PMC

Ding W, Xu C, Wang B, Zhang M. Rotenone attenuates renal injury in aldosterone-infused rats by inhibiting oxidative stress, mitochondrial dysfunction, and inflammasome activation. Med Sci Monit. 2015;21:3136–43. PubMed PMC

Jing L, Li Q, He L, et al. Protective effect of tempol against hypoxia-induced oxidative stress and apoptosis in H9c2 cells. Med Sci Monit Basic Res. 2017;23:159–65. PubMed PMC

Samak M, Fatullayev J, Sabashnikov A, et al. Cardiac hypertrophy: An introduction to molecular and cellular basis. Med Sci Monit Basic Res. 2016;22:75–79. PubMed PMC

Frye RE, Slattery J, MacFabe DF, et al. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis. 2015;26:26878. PubMed PMC

Frye RE, Rose S, Slattery J, MacFabe DF. Gastrointestinal dysfunction in autism spectrum disorder: The role of the mitochondria and the enteric microbiome. Microb Ecol Health Dis. 2015;26:27458. PubMed PMC

Ptacek R, Kuzelova H, Stefano GB. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders. Med Sci Monit. 2011;17(9):RA215–20. PubMed PMC

Ptacek R, Kuzelova H, Stefano GB. Genetics in psychiatry – up-to-date review 2011. Neuro Endocrinol Lett. 2011;32(4):389–99. PubMed

Kuzelova H, Ptacek R, Macek M. The serotonin transporter gene (5-HTT) variant and psychiatric disorders: Review of current literature. Neuro Endocrinol Lett. 2010;31(1):4–10. PubMed

Davidson JR. Major depressive disorder treatment guidelines in America and Europe. J Clin Psychiatry. 2010;71(Suppl E1):e04. PubMed

Boschloo L, Reeuwijk KG, Schoevers RA, W J H Penninx B. The impact of lifestyle factors on the 2-year course of depressive and/or anxiety disorders. J Affect Disord. 2014;159:73–79. PubMed

Lopresti AL, Hood SD, Drummond PD. A review of lifestyle factors that contribute to important pathways associated with major depression: Diet, sleep and exercise. J Affect Disord. 2013;148(1):12–27. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...