Independent and sensory human mitochondrial functions reflecting symbiotic evolution

. 2023 ; 13 () : 1130197. [epub] 20230614

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37389212

The bacterial origin of mitochondria has been a widely accepted as an event that occurred about 1.45 billion years ago and endowed cells with internal energy producing organelle. Thus, mitochondria have traditionally been viewed as subcellular organelle as any other - fully functionally dependent on the cell it is a part of. However, recent studies have given us evidence that mitochondria are more functionally independent than other organelles, as they can function outside the cells, engage in complex "social" interactions, and communicate with each other as well as other cellular components, bacteria and viruses. Furthermore, mitochondria move, assemble and organize upon sensing different environmental cues, using a process akin to bacterial quorum sensing. Therefore, taking all these lines of evidence into account we hypothesize that mitochondria need to be viewed and studied from a perspective of a more functionally independent entity. This view of mitochondria may lead to new insights into their biological function, and inform new strategies for treatment of disease associated with mitochondrial dysfunction.

Zobrazit více v PubMed

Abbott J. A., Francklyn C. S., Robey-Bond S. M. (2014). Transfer RNA and human disease. Front. Genet. 5. doi: 10.3389/fgene.2014.00158 PubMed DOI PMC

Al Amir Dache Z., Otandault A., Tanos R., Pastor B., Meddeb R., Sanchez C., et al. . (2020). Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 34 (3), 3616–3630. doi: 10.1096/fj.201901917RR PubMed DOI

Angajala A., Lim S., Phillips J. B., Kim J. H., Yates C., You Z., et al. . (2018). Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front. Immunol. 9. doi: 10.3389/fimmu.2018.01605 PubMed DOI PMC

Arnoult D., Petit F., Lelievre J. D., Estaquier J. (2003). Mitochondria in HIV-1-induced apoptosis. Biochem. Biophys. Res. Commun. 304 (3), 561–574. doi: 10.1016/s0006-291x(03)00629-6 PubMed DOI

Babayev E., Seli E. (2015). Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet Gynecol 27 (3), 175–181. doi: 10.1097/GCO.0000000000000164 PubMed DOI PMC

Baker N., Wade S., Triolo M., Girgis J., Chwastek D., Larrigan S., et al. . (2022). The mitochondrial protein OPA1 regulates the quiescent state of adult muscle stem cells. Cell Stem Cell 29 (9), 1315–1332.e1319. doi: 10.1016/j.stem.2022.07.010 PubMed DOI PMC

Bedarf J. R., Hildebrand F., Coelho L. P., Sunagawa S., Bahram M., Goeser F., et al. . (2017). Functional implications of microbial and viral gut metagenome changes in early stage l-DOPA-naive parkinson’s disease patients. Genome Med. 9 (1), 39. doi: 10.1186/s13073-017-0428-y PubMed DOI PMC

Bergthorsson U., Adams K. L., Thomason B., Palmer J. D. (2003). Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424 (6945), 197–201. doi: 10.1038/nature01743 PubMed DOI

Berridge M. V., Neuzil J. (2017). The mobility of mitochondria: intercellular trafficking in health and disease. Clin. Exp. Pharmacol. Physiol. 44 (Suppl 1), 15–20. doi: 10.1111/1440-1681.12764 PubMed DOI

Birsa N., Norkett R., Higgs N., Lopez-Domenech G., Kittler J. T. (2013). Mitochondrial trafficking in neurons and the role of the miro family of GTPase proteins. Biochem. Soc. Trans. 41 (6), 1525–1531. doi: 10.1042/BST20130234 PubMed DOI

Boguszewska K., Szewczuk M., Kazmierczak-Baranska J., Karwowski B. T. (2020). The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules 25 (12). doi: 10.3390/molecules25122857 PubMed DOI PMC

Bohovych I., Khalimonchuk O. (2016). Sending out an SOS: mitochondria as a signaling hub. Front. Cell Dev. Biol. 4. doi: 10.3389/fcell.2016.00109 PubMed DOI PMC

Brokatzky D., Hacker G. (2022). Mitochondria: intracellular sentinels of infections. Med. Microbiol. Immunol. 211 (4), 161–172 doi: 10.1007/s00430-022-00742-9 PubMed DOI PMC

Bruckmaier M., Tachtsidis I., Phan P., Lavie N. (2020). Attention and capacity limits in perception: a cellular metabolism account. J. Neurosci. 40 (35), 6801–6811. doi: 10.1523/JNEUROSCI.2368-19.2020 PubMed DOI PMC

Buttiker P., Weissenberger S., Ptacek R., Stefano G. B. (2021. a). Interoception, trait anxiety, and the gut microbiome: a cognitive and physiological model. Med. Sci. Monit 27, e931962. doi: 10.12659/MSM.931962 PubMed DOI PMC

Buttiker P., Weissenberger S., Stefano G. B., Kream R. M., Ptacek R. (2021. b). SARS-CoV-2, trait anxiety, and the microbiome. Front. Psychiatry 12. doi: 10.3389/fpsyt.2021.720082 PubMed DOI PMC

Castillo D. J., Rifkin R. F., Cowan D. A., Potgieter M. (2019). The healthy human blood microbiome: fact or fiction? Front. Cell Infect. Microbiol. 9. doi: 10.3389/fcimb.2019.00148 PubMed DOI PMC

Catalan M., Olmedo I., Faundez J., Jara J. A. (2020). Medicinal chemistry targeting mitochondria: from new vehicles and pharmacophore groups to old drugs with mitochondrial activity. Int. J. Mol. Sci. 21 (22). doi: 10.3390/ijms21228684 PubMed DOI PMC

Cavalier-Smith T. (2006). Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium. Proc.Biol.Sci. 273 (1596), 1943–1952. doi: 10.1098/rspb.2006.3531 PubMed DOI PMC

Chandel N. S. (2014). Mitochondria as signaling organelles. BMC Biol. 12, 34. doi: 10.1186/1741-7007-12-34 PubMed DOI PMC

Chou S. H., Lan J., Esposito E., Ning M., Balaj L., Ji X., et al. . (2017). Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke 48 (8), 2231–2237. doi: 10.1161/STROKEAHA.117.017758 PubMed DOI PMC

Coller H. A. (2019). The paradox of metabolism in quiescent stem cells. FEBS Lett. 593 (20), 2817–2839. doi: 10.1002/1873-3468.13608 PubMed DOI PMC

Collins T. J., Berridge M. J., Lipp P., Bootman M. D. (2002). Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21 (7), 1616–1627. doi: 10.1093/emboj/21.7.1616 PubMed DOI PMC

Debattisti V., Gerencser A. A., Saotome M., Das S., Hajnoczky G. (2017). ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 21 (6), 1667–1680. doi: 10.1016/j.celrep.2017.10.060 PubMed DOI PMC

Deo P., Chow S. H., Han M. L., Speir M., Huang C., Schittenhelm R. B., et al. . (2020). Mitochondrial dysfunction caused by outer membrane vesicles from gram-negative bacteria activates intrinsic apoptosis and inflammation. Nat. Microbiol. 5 (11), 1418–1427. doi: 10.1038/s41564-020-0773-2 PubMed DOI

Desai R., East D. A., Hardy L., Faccenda D., Rigon M., Crosby J., et al. . (2020). Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci. Adv. 6 (51). doi: 10.1126/sciadv.abc9955 PubMed DOI PMC

Diaz-Carballo D., Klein J., Acikelli A. H., Wilk C., Saka S., Jastrow H., et al. . (2017). Cytotoxic stress induces transfer of mitochondria-associated human endogenous retroviral RNA and proteins between cancer cells. Oncotarget 8 (56), 95945–95964. doi: 10.18632/oncotarget.21606 PubMed DOI PMC

Dutta S., Das N., Mukherjee P. (2020). Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA viruses. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.01990 PubMed DOI PMC

Emamalipour M., Seidi K., Zununi Vahed S., Jahanban-Esfahlan A., Jaymand M., Majdi H., et al. . (2020). Horizontal gene transfer: from evolutionary flexibility to disease progression. Front. Cell Dev. Biol. 8. doi: 10.3389/fcell.2020.00229 PubMed DOI PMC

Esch T., Stefano G. B., Ptacek R., Kream R. M. (2020). Emerging roles of blood-borne intact and respiring mitochondria as bidirectional mediators of pro- and anti-inflammatory processes. Med. Sci. Monit 26, e924337. doi: 10.12659/MSM.924337 PubMed DOI PMC

Gitschlag B. L., Tate A. T., Patel M. R. (2020). Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. Elife 9. doi: 10.7554/eLife.56686 PubMed DOI PMC

Gould S. J., Lloyd E. A. (1999). Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? Proc. Natl. Acad. Sci. U.S.A. 96 (21), 11904–11909. doi: 10.1073/pnas.96.21.11904 PubMed DOI PMC

Gray M. W., Burger G., Lang B. F. (1999). Mitochondrial evolution. Science 283 (5407), 1476–1481. doi: 10.1126/science.283.5407.1476 PubMed DOI

Gray M. W., Burger G., Lang B. F. (2001). The origin and early evolution of mitochondria. Genome Biol. 2 (6), REVIEWS1018. doi: 10.1186/gb-2001-2-6-reviews1018 PubMed DOI PMC

Han B., Lin C. J., Hu G., Wang M. C. (2019). ‘Inside out’- a dialogue between mitochondria and bacteria. FEBS J. 286 (4), 630–641. doi: 10.1111/febs.14692 PubMed DOI PMC

Hayakawa K., Bruzzese M., Chou S. H., Ning M., Ji X., Lo E. H. (2018). Extracellular mitochondria for therapy and diagnosis in acute central nervous system injury. JAMA Neurol. 75 (1), 119–122. doi: 10.1001/jamaneurol.2017.3475 PubMed DOI PMC

Hayakawa K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., et al. . (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535 (7613), 551–555. doi: 10.1038/nature18928 PubMed DOI PMC

Hayashida K., Takegawa R., Shoaib M., Aoki T., Choudhary R. C., Kuschner C. E., et al. . (2021). Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J. Transl. Med. 19 (1), 214. doi: 10.1186/s12967-021-02878-3 PubMed DOI PMC

Hazkani-Covo E., Zeller R. M., Martin W. (2010). Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PloS Genet. 6 (2), e1000834. doi: 10.1371/journal.pgen.1000834 PubMed DOI PMC

Jackson M. V., Morrison T. J., Doherty D. F., McAuley D. F., Matthay M. A., Kissenpfennig A., et al. . (2016). Mitochondrial transfer via tunneling nanotubes (TNT) is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 34 (8), 2210–23. doi: 10.1002/stem.2372 PubMed DOI PMC

Joshi A. U., Minhas P. S., Liddelow S. A., Haileselassie B., Andreasson K. I., Dorn G. W., et al. . (2019). Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22 (10), 1635–1648. doi: 10.1038/s41593-019-0486-0 PubMed DOI PMC

Kalghatgi S., Spina C. S., Costello J. C., Liesa M., Morones-Ramirez J. R., Slomovic S., et al. . (2013). Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5 (192), 192ra185. doi: 10.1126/scitranslmed.3006055 PubMed DOI PMC

Lightowlers R. N., Chrzanowska-Lightowlers Z. M., Russell O. M. (2020). Mitochondrial transplantation-a possible therapeutic for mitochondrial dysfunction?: mitochondrial transfer is a potential cure for many diseases but proof of efficacy and safety is still lacking. EMBO Rep. 21 (9), e50964. doi: 10.15252/embr.202050964 PubMed DOI PMC

Liu Z., Sun Y., Qi Z., Cao L., Ding S. (2022). Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 12 (1), 66. doi: 10.1186/s13578-022-00805-7 PubMed DOI PMC

Lobet E., Letesson J. J., Arnould T. (2015). Mitochondria: a target for bacteria. Biochem. Pharmacol. 94 (3), 173–185. doi: 10.1016/j.bcp.2015.02.007 PubMed DOI

Lynch M. A. (2020). Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog. Neurobiol. 184, 101719. doi: 10.1016/j.pneurobio.2019.101719 PubMed DOI

MacVicar T., Ohba Y., Nolte H., Mayer F. C., Tatsuta T., Sprenger H. G., et al. . (2019). Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 575 (7782), 361–365. doi: 10.1038/s41586-019-1738-6 PubMed DOI

Magistretti P. J., Allaman I. (2015). A cellular perspective on brain energy metabolism and functional imaging. Neuron 86 (4), 883–901. doi: 10.1016/j.neuron.2015.03.035 PubMed DOI

Main B. S., Minter M. R. (2017). Microbial immuno-communication in neurodegenerative diseases. Front. Neurosci. 11. doi: 10.3389/fnins.2017.00151 PubMed DOI PMC

Markova N. D. (2017). L-form bacteria cohabitants in human blood: significance for health and diseases. Discovery Med. 23 (128), 305–313. PubMed

Martijn J., Vosseberg J., Guy L., Offre P., Ettema T. J. G. (2018). Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557 (7703), 101–105. doi: 10.1038/s41586-018-0059-5 PubMed DOI

McCoy-Simandle K., Hanna S. J., Cox D. (2016). Exosomes and nanotubes: control of immune cell communication. Int. J. Biochem. Cell Biol. 71, 44–54. doi: 10.1016/j.biocel.2015.12.006 PubMed DOI PMC

McCully J. D., Levitsky S., Del Nido P. J., Cowan D. B. (2016). Mitochondrial transplantation for therapeutic use. Clin. Transl. Med. 5 (1), 16. doi: 10.1186/s40169-016-0095-4 PubMed DOI PMC

Megens S., Vaira D., De Baets G., Dekeersmaeker N., Schrooten Y., Li G., et al. . (2014). Horizontal gene transfer from human host to HIV-1 reverse transcriptase confers drug resistance and partly compensates for replication deficits. Virology 456-457, 310–318. doi: 10.1016/j.virol.2014.03.023 PubMed DOI

Mehrzadi S., Karimi M. Y., Fatemi A., Reiter R. J., Hosseinzadeh A. (2021). SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. Pharmacol. Ther. 224, 107825. doi: 10.1016/j.pharmthera.2021.107825 PubMed DOI PMC

Milner D. S., Wideman J. G., Stairs C. W., Dunn C. D., Richards T. A. (2021). A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist. PloS Biol. 19 (4), e3001126. doi: 10.1371/journal.pbio.3001126 PubMed DOI PMC

Montes de Oca Balderas P. (2021). Mitochondria-plasma membrane interactions and communication. J. Biol. Chem. 297, 1–13. doi: 10.1016/j.jbc.2021.101164 PubMed DOI PMC

Munoz-Gomez S. A., Susko E., Williamson K., Eme L., Slamovits C. H., Moreira D., et al. . (2022). Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known alphaproteobacteria. Nat. Ecol. Evol. 6 (3), 253–262. doi: 10.1038/s41559-021-01638-2 PubMed DOI

Nakamura Y., Park J. H., Hayakawa K. (2020). Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp. Neurol. 324, 113114. doi: 10.1016/j.expneurol.2019.113114 PubMed DOI PMC

Neu U., Mainou B. A. (2020). Virus interactions with bacteria: partners in the infectious dance. PloS Pathog. 16 (2), e1008234. doi: 10.1371/journal.ppat.1008234 PubMed DOI PMC

Park A., Oh M., Lee S. J., Oh K. J., Lee E. W., Lee S. C., et al. . (2021). Mitochondrial transplantation as a novel therapeutic strategy for mitochondrial diseases. Int. J. Mol. Sci. 22 (9). doi: 10.3390/ijms22094793 PubMed DOI PMC

Picard M., McManus M. J., Csordas G., Varnai P., Dorn G. W., 2nd, Williams D., et al. . (2015). Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 6 6259. doi: 10.1038/ncomms7259 PubMed DOI PMC

Picard M., Sandi C. (2021). The social nature of mitochondria: implications for human health. Neurosci. Biobehav. Rev. 120, 595–610. doi: 10.1016/j.neubiorev.2020.04.017 PubMed DOI PMC

Pollara J., Edwards R. W., Lin L., Bendersky V. A., Brennan T. V. (2018). Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight 3 (15). doi: 10.1172/jci.insight.121622 PubMed DOI PMC

Puertas M. J., Gonzalez-Sanchez M. (2020). Insertions of mitochondrial DNA into the nucleus-effects and role in cell evolution. Genome 63 (8), 365–374. doi: 10.1139/gen-2019-0151 PubMed DOI

Raichle M. E., Gusnard D. A. (2002). Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. U.S.A. 99 (16), 10237–10239. doi: 10.1073/pnas.172399499 PubMed DOI PMC

Raimundo N., Krisko A. (2019). Editorial: mitochondrial communication in physiology, disease and aging. Front. Cell Dev. Biol. 7. doi: 10.3389/fcell.2019.00054 PubMed DOI PMC

Rangaraju V., Calloway N., Ryan T. A. (2014). Activity-driven local ATP synthesis is required for synaptic function. Cell 156 (4), 825–835. doi: 10.1016/j.cell.2013.12.042 PubMed DOI PMC

Rice D. W., Alverson A. J., Richardson A. O., Young G. J., Sanchez-Puerta M. V., Munzinger J., et al. . (2013). Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm amborella. Science 342 (6165), 1468–1473. doi: 10.1126/science.1246275 PubMed DOI

Rice D. W., Palmer J. D. (2006). An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 4, 31. doi: 10.1186/1741-7007-4-31 PubMed DOI PMC

Saint-Georges-Chaumet Y., Edeas M. (2016). Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction. Pathog. Dis. 74 (1), ftv096. doi: 10.1093/femspd/ftv096 PubMed DOI

Schilf P., Kunstner A., Olbrich M., Waschina S., Fuchs B., Galuska C. E., et al. . (2021). A mitochondrial polymorphism alters immune cell metabolism and protects mice from skin inflammation. Int. J. Mol. Sci. 22 (3). doi: 10.3390/ijms22031006 PubMed DOI PMC

Shang C., Liu Z., Zhu Y., Lu J., Ge C., Zhang C., et al. . (2021). SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.780768 PubMed DOI PMC

Singh K. K., Chaubey G., Chen J. Y., Suravajhala P. (2020). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319 (2), C258–C267. doi: 10.1152/ajpcell.00224.2020 PubMed DOI PMC

Singh A., Faccenda D., Campanella M. (2021). Pharmacological advances in mitochondrial therapy. EBioMedicine 65, 103244. doi: 10.1016/j.ebiom.2021.103244 PubMed DOI PMC

Snyder C., Kream R. M., Ptacek R., Stefano G. B. (2015). Mitochondria, microbiome and their potential psychiatric modulation. Autism Open Access 5 (2), 144. doi: 10.4172/2165-7890.1000144 DOI

Song X., Hu W., Yu H., Wang H., Zhao Y., Korngold R., et al. . (2020). Existence of circulating mitochondria in human and animal peripheral blood. Int. J. Mol. Sci. 21 (6). doi: 10.3390/ijms21062122 PubMed DOI PMC

Sorouri M., Chang T., Hancks D. C. (2022). Mitochondria and viral infection: advances and emerging battlefronts. mBio 13 (1), e0209621. doi: 10.1128/mbio.02096-21 PubMed DOI PMC

Stairs C. W., Leger M. M., Roger A. J. (2015). Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R Soc. Lond B Biol. Sci. 370 (1678), 20140326. doi: 10.1098/rstb.2014.0326 PubMed DOI PMC

Stefano G. B., Bilfinger T. V., Fricchione G. L. (1994). The immune neuro-link and the macrophage: postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog.Neurobiol. 42, 475–488. doi: 10.1016/0301-0082(94)90048-5 PubMed DOI

Stefano G. B., Bjenning C., Wang F., Wang N., Kream R. M. (2017). Mitochondrial heteroplasmy. Adv. Exp. Med. Biol. 982, 577–594. doi: 10.1007/978-3-319-55330-6_30 PubMed DOI

Stefano G. B., Büttiker P., Kream R. M. (2022. d). Reassessment of the blood-brain barrier: a potential target for viral entry into the immune-privileged brain. Germs 12 (1), 99–100. doi: 10.18683/germs.2022.1310 PubMed DOI PMC

Stefano G. B., Buttiker P., Weissenberger S., Ptacek R., Wang F., Esch T., et al. . (2022. c). Biomedical perspectives of acute and chronic neurological and neuropsychiatric sequelae of COVID-19. Curr. Neuropharmacol 20 (6), 1229–1240. doi: 10.2174/1570159X20666211223130228 PubMed DOI PMC

Stefano G. B., Kream R. M. (2015. a). Cancer: mitochondrial origins. Med. Sci. Monitor 21, 3736–3739. doi: 10.12659/MSM.895990 PubMed DOI PMC

Stefano G. B., Kream R. M. (2015. b). Hypoxia defined as a common Culprit/Initiation factor in mitochondrial-mediated proinflammatory processes. Med. Sci. Monit 21, 1478–1484. doi: 10.12659/MSM.894437 PubMed DOI PMC

Stefano G. B., Kream R. M. (2022. a). Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 neurological disorders. Cell Mol. Neurobiol. 42 (1), 99–107. doi: 10.1007/s10571-021-01117-z PubMed DOI PMC

Stefano G. B., Kream R. M. (2022. b). Viruses broaden the definition of life by genomic incorporation of artificial intelligence and machine learning processes. Curr. Neuropharmacol 20, 1888–1893. doi: 10.2174/1570159X20666220420121746 PubMed DOI PMC

Stefano M. L., Kream R. M., Stefano G. B. (2020). A novel vaccine employing non-replicating rabies virus expressing chimeric SARS-CoV-2 spike protein domains: functional inhibition of Viral/Nicotinic acetylcholine receptor complexes. Med. Sci. Monit 26, e926016. doi: 10.12659/MSM.926016 PubMed DOI PMC

Stefano G. B., Mantione K. J., Casares F. M., Kream R. M. (2015. c). Anaerobically functioning mitochondria: evolutionary perspective on modulation of energy metabolism in Mytilus edulis . Invertebrate Survival J. 12, 22–28.

Takahashi E., Sato M. (2014). Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment. Am. J. Physiol. Cell Physiol. 306 (4), C334–C342. doi: 10.1152/ajpcell.00255.2013 PubMed DOI

Tielens A. G., Rotte C., van Hellemond J. J., Martin W. (2002). Mitochondria as we don’t know them. Trends Biochem. Sci. 27 (11), 564–572. doi: 10.1016/S0968-0004(02)02193-X PubMed DOI

Tiku V., Tan M. W., Dikic I. (2020). Mitochondrial functions in infection and immunity. Trends Cell Biol. 30 (4), 263–275. doi: 10.1016/j.tcb.2020.01.006 PubMed DOI PMC

Ulger O., Kubat G. B. (2022). Therapeutic applications of mitochondrial transplantation. Biochimie 195, 1–15. doi: 10.1016/j.biochi.2022.01.002 PubMed DOI

Valenti D., Vacca R. A., Moro L., Atlante A. (2021). Mitochondria can cross cell boundaries: an overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int. J. Mol. Sci. 22 (15). doi: 10.3390/ijms22158312 PubMed DOI PMC

Wallace D. C. (2020). CRISPR-free mitochondrial DNA base editing. CRISPR J. 3 (4), 228–230. doi: 10.1089/crispr.2020.29101.dwa PubMed DOI

Wallace D. C., Chalkia D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5 (11), a021220. doi: 10.1101/cshperspect.a021220 PubMed DOI PMC

Wang X., Gerdes H. H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22 (7), 1181–1191. doi: 10.1038/cdd.2014.211 PubMed DOI PMC

Wang W., Karamanlidis G., Tian R. (2016). Novel targets for mitochondrial medicine. Sci. Transl. Med. 8 (326), 326rv323. doi: 10.1126/scitranslmed.aac7410 PubMed DOI PMC

Wang F., Kream R. M., Stefano G. B. (2020). Long-term respiratory and neurological sequelae of COVID-19. Med. Sci. Monit 26, e928996. doi: 10.12659/MSM.928996 PubMed DOI PMC

Wei W., Schon K. R., Elgar G., Orioli A., Tanguy M., Giess A., et al. . (2022). Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature 611 (7934), 105–114. doi: 10.1038/s41586-022-05288-7 PubMed DOI PMC

Weinberg J. M., Venkatachalam M. A., Roeser N. F., Nissim I. (2000). Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc. Natl. Acad. Sci. U.S.A. 97 (6), 2826–2831. doi: 10.1073/pnas.97.6.2826 PubMed DOI PMC

Wu Z., Oeck S., West A. P., Mangalhara K. C., Sainz A. G., Newman L. E., et al. . (2019). Mitochondrial DNA stress signalling protects the nuclear genome. Nat. Metab. 1 (12), 1209–1218. doi: 10.1038/s42255-019-0150-8 PubMed DOI PMC

Xia M., Zhang Y., Jin K., Lu Z., Zeng Z., Xiong W. (2019). Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci. 9, 27. doi: 10.1186/s13578-019-0289-8 PubMed DOI PMC

Xu J., Shamul J. G., Kwizera E. A., He X. (2022). Recent advancements in mitochondria-targeted nanoparticle drug delivery for cancer therapy. Nanomaterials 12 (5). doi: 10.3390/nano12050743 PubMed DOI PMC

Yang Q., Liu P., Anderson N. S., Shpilka T., Du Y., Naresh N. U., et al. . (2022). LONP-1 and ATFS-1 sustain deleterious heteroplasmy by promoting mtDNA replication in dysfunctional mitochondria. Nat. Cell Biol. 24 (2), 181–193. doi: 10.1038/s41556-021-00840-5 PubMed DOI PMC

Ye Z., Zhao C., Raborn R. T., Lin M., Wei W., Hao Y., et al. . (2022). Genetic diversity, heteroplasmy, and recombination in mitochondrial genomes of daphnia pulex, daphnia pulicaria, and daphnia obtusa. Mol. Biol. Evol. 39 (4). doi: 10.1093/molbev/msac059 PubMed DOI PMC

Záhonová K., Treitli S. C., Le T., Škodová-Sveráková I., Hanousková P., Čepička I., et al. . (2022). Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba pelomyxa schiedti revealed by single-cell genomics. BMC Biol. 20 (1), 56. doi: 10.1186/s12915-022-01247-w PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace