Effect of DSS-Induced Ulcerative Colitis and Butyrate on the Cytochrome P450 2A5: Contribution of the Microbiome

. 2022 Oct 01 ; 23 (19) : . [epub] 20221001

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36232929

Grantová podpora
19-08294S The Czech Science Foundation
IGA_LF_2022_025 Internal Student Grant Agency of Palacky University

Several studies have indicated the beneficial anti-inflammatory effect of butyrate in inflammatory bowel disease (IBD) therapy implying attempts to increase butyrate production in the gut through orally administered dietary supplementation. Through the gut-liver axis, however, butyrate may reach directly the liver and influence the drug-metabolizing ability of hepatic enzymes, and, indirectly, also the outcome of applied pharmacotherapy. The focus of our study was on the liver microsomal cytochrome P450 (CYP) 2A5, which is a mouse orthologue of human CYP2A6 responsible for metabolism of metronidazole, an antibiotic used to treat IBD. Our findings revealed that specific pathogen-free (SPF) and germ-free (GF) mice with dextran sulfate sodium (DSS)-induced colitis varied markedly in enzyme activity of CYP2A and responded differently to butyrate pre-treatment. A significant decrease (to 50%) of the CYP2A activity was observed in SPF mice with colitis; however, an administration of butyrate prior to DSS reversed this inhibition effect. This phenomenon was not observed in GF mice. The results highlight an important role of gut microbiota in the regulation of CYP2A under inflammatory conditions. Due to the role of CYP2A in metronidazole metabolism, this phenomenon may have an impact on the IBD therapy. Butyrate administration, hence, brings promising therapeutic potential for improving symptoms of gut inflammation; however, possible interactions with drug metabolism need to be further studied.

Zobrazit více v PubMed

Keller D.S., Windsor A., Cohen R., Chand M. Colorectal cancer in inflammatory bowel disease: Review of the evidence. Tech. Coloproctol. 2019;23:3–13. doi: 10.1007/s10151-019-1926-2. PubMed DOI

Pavel F.M., Vesa C.M., Gheorghe G., Diaconu C.C., Stoicescu M., Munteanu M.A., Babes E.E., Tit D.M., Toma M.M., Bungau S. Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics. 2021;11:1090. doi: 10.3390/diagnostics11061090. PubMed DOI PMC

Schaubeck M., Clavel T., Calasan J., Lagkouvardos I., Haange S.B., Jehmlich N., Basic M., Dupont A., Hornef M., von Bergen M., et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65:225–237. doi: 10.1136/gutjnl-2015-309333. PubMed DOI PMC

Bruneau A., Hundertmark J., Guillot A., Tacke F. Molecular and Cellular Mediators of the Gut-Liver Axis in the Progression of Liver Diseases. Front. Med. 2021;8:725390. doi: 10.3389/fmed.2021.725390. PubMed DOI PMC

Iyer N., Corr S.C. Gut Microbial Metabolite-Mediated Regulation of the Intestinal Barrier in the Pathogenesis of Inflammatory Bowel Disease. Nutrients. 2021;13:4259. doi: 10.3390/nu13124259. PubMed DOI PMC

den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012. PubMed DOI PMC

Kushwaha V., Rai P., Varshney S., Gupta S., Khandelwal N., Kumar D., Nilkanth Gaikwad A. Sodium butyrate reduces endoplasmic reticulum stress by modulating CHOP and empowers favorable anti-inflammatory adipose tissue immune-metabolism in HFD fed mice model of obesity. Food Chem. 2022;4:100079. doi: 10.1016/j.fochms.2022.100079. PubMed DOI PMC

Sugihara K., Morhardt T.L., Kamada N. The Role of Dietary Nutrients in Inflammatory Bowel Disease. Front. Immunol. 2019;9:3183. doi: 10.3389/fimmu.2018.03183. PubMed DOI PMC

Burger-van Paassen N., Vincent A., Puiman P.J., van der Sluis M., Bouma J., Boehm G., van Goudoever J.B., van Seuningen I., Renes I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J. 2009;420:211–219. doi: 10.1042/BJ20082222. PubMed DOI

Antunes J.C., Seabra C.L., Domingues J.M., Teixeira M.O., Nunes C., Costa-Lima S.A., Homem N.C., Reis S., Amorim M.T.P., Felgueiras H.P. Drug Targeting of Inflammatory Bowel Diseases by Biomolecules. Nanomaterials. 2021;11:2035. doi: 10.3390/nano11082035. PubMed DOI PMC

Zemanová N., Lněničková K., Vavrečková M., Anzenbacherová E., Anzenbacher P., Zapletalová I., Hermanová P., Hudcovic T., Kozáková H., Jourová L. Gut microbiome affects the metabolism of metronidazole in mice through regulation of hepatic cytochromes P450 expression. PLoS ONE. 2021;16:e0259643. doi: 10.1371/journal.pone.0259643. PubMed DOI PMC

Jourova L., Anzenbacher P., Anzenbacherova E. Human gut microbiota plays a role in the metabolism of drugs. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2016;160:317–326. doi: 10.5507/bp.2016.039. PubMed DOI

Clayton T.A., Baker D., Lindon J.C., Everett J.R., Nicholson J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. USA. 2009;106:14728–14733. doi: 10.1073/pnas.0904489106. PubMed DOI PMC

Jourová L., Vavreckova M., Zemanova N., Anzenbacher P., Langova K., Hermanova P., Hudcovic T., Anzenbacherova E. Gut Microbiome Alters the Activity of Liver Cytochromes P450 in Mice With Sex-Dependent Differences. Front. Pharmacol. 2020;11:01303. doi: 10.3389/fphar.2020.01303. PubMed DOI PMC

Selwyn F.P., Cui J.Y., Klaassen C.D. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice. Drug Metab. Dispos. 2015;43:1572–1580. doi: 10.1124/dmd.115.063545. PubMed DOI PMC

Anzenbacher P., Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 2001;58:737–747. doi: 10.1007/PL00000897. PubMed DOI PMC

Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI

Di Ciaula A., Baj J., Garruti G., Celano G., De Angelis M., Wang H.H., Di Palo D.M., Bonfrate L., Wang D.Q., Portincasa P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J. Clin. Med. 2020;9:2648. doi: 10.3390/jcm9082648. PubMed DOI PMC

Christmas P. Role of Cytochrome P450s in Inflammation. In: Hardwick J.P., editor. Advances in Pharmacology. Volume 74. Academic Press; San Diego, CA, USA: 2015. pp. 163–192. PubMed

Pearce R.E., Cohen-Wolkowiez M., Sampson M.R., Kearns G.L. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab. Dispos. 2013;41:1686–1694. doi: 10.1124/dmd.113.052548. PubMed DOI PMC

Nitzan O., Elias M., Peretz A., Saliba W. Role of antibiotics for treatment of inflammatory bowel disease. World J. Gastroenterol. 2016;22:1078–1087. doi: 10.3748/wjg.v22.i3.1078. PubMed DOI PMC

Rae J.M., Johnson M.D., Lippman M.E., Flockhart D.A. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: Studies with cDNA and oligonucleotide expression arrays. J. Pharmacol. Exp. Ther. 2001;299:849–857. PubMed

Donato M.T., Viitala P., Rodriguez-Antona C., Lindfors A., Castell J.V., Raunio H., Gómez-Lechón M.J., Pelkonen O. CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. Drug Metab. Dispos. 2000;28:1321–1326. PubMed

Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 2018;11:1–10. doi: 10.1007/s12328-017-0813-5. PubMed DOI

Ding Y., Yanagi K., Cheng C., Alaniz R.C., Lee K., Jayaraman A. Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites. Pharmacol. Res. 2019;141:521–529. doi: 10.1016/j.phrs.2019.01.029. PubMed DOI PMC

Saltzman E.T., Palacios T., Thomsen M., Vitetta L. Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease. Front. Microbiol. 2018;9:61. doi: 10.3389/fmicb.2018.00061. PubMed DOI PMC

Boyapati R.K., Dorward D.A., Tamborska A., Kalla R., Ventham N.T., Doherty M.K., Whitfield P.D., Gray M., Loane J., Rossi A.G., et al. Mitochondrial DNA Is a Pro-Inflammatory Damage-Associated Molecular Pattern Released During Active IBD. Inflamm. Bowel Dis. 2018;24:2113–2122. doi: 10.1093/ibd/izy095. PubMed DOI PMC

Jourova L., Satka S., Frybortova V., Zapletalova I., Anzenbacher P., Anzenbacherova E., Hermanova P.P., Drabonova B., Srutkova D., Kozakova H., et al. Butyrate Treatment of DSS-Induced Ulcerative Colitis Affects the Hepatic Drug Metabolism in Mice. Front. Pharmacol. 2022;13:936013. doi: 10.3389/fphar.2022.936013. PubMed DOI PMC

Kwon J., Lee C., Heo S., Kim B., Hyun C.K. DSS-induced colitis is associated with adipose tissue dysfunction and disrupted hepatic lipid metabolism leading to hepatosteatosis and dyslipidemia in mice. Sci. Rep. 2021;11:5283. doi: 10.1038/s41598-021-84761-1. PubMed DOI PMC

Daujat-Chavanieu M., Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells. 2020;9:2395. doi: 10.3390/cells9112395. PubMed DOI PMC

Kusunoki Y., Ikarashi N., Hayakawa Y., Ishii M., Kon R., Ochiai W., Machida Y., Sugiyama K. Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis. Eur. J. Pharm. Sci. 2014;54:17–27. doi: 10.1016/j.ejps.2013.12.019. PubMed DOI

Anzenbacher P., Zanger U.M. Metabolism of Drugs and Other Xenobiotics. Wiley-VCH Verlag & Co. KGaA; Weinheim, Germany: 2012.

Gerbal-Chaloin S., Iankova I., Maurel P., Daujat-Chavanieu M. Nuclear receptors in the cross-talk of drug metabolism and inflammation. Drug Metab. Rev. 2013;45:122–144. doi: 10.3109/03602532.2012.756011. PubMed DOI

Teng S., Piquette-Miller M. The Involvement of the Pregnane X Receptor in Hepatic Gene Regulation during Inflammation in Mice. J. Pharmacol. Exp. Ther. 2005;312:841. doi: 10.1124/jpet.104.076141. PubMed DOI

Pascussi J.M., Gerbal-Chaloin S., Pichard-Garcia L., Daujat M., Fabre J.M., Maurel P., Vilarem M.J. Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem. Biophys. Res. Commun. 2000;274:707–713. doi: 10.1006/bbrc.2000.3219. PubMed DOI

Jourova L., Anzenbacher P., Matuskova Z., Vecera R., Strojil J., Kolar M., Nobilis M., Hermanova P., Hudcovic T., Kozakova H., et al. Gut microbiota metabolizes nabumetone in vitro: Consequences for its bioavailability in vivo in the rodents with altered gut microbiome. Xenobiotica. 2019;49:1296–1302. doi: 10.1080/00498254.2018.1558310. PubMed DOI

Sousa T., Paterson R., Moore V., Carlsson A., Abrahamsson B., Basit A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm. 2008;363:1–25. doi: 10.1016/j.ijpharm.2008.07.009. PubMed DOI

Jourová L., Anzenbacher P., Lišková B., Matušková Z., Hermanová P., Hudcovic T., Kozáková H., Hrnčířová L., Anzenbacherová E. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiol. 2017;62:463–469. doi: 10.1007/s12223-017-0517-8. PubMed DOI

Selwyn F.P., Cheng S.L., Klaassen C.D., Cui J.Y. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. Drug Metab. Dispos. 2016;44:262–274. doi: 10.1124/dmd.115.067504. PubMed DOI PMC

Vernia P., Marcheggiano A., Caprilli R., Frieri G., Corrao G., Valpiani D., Paolo M.C.D., Paoluzi P., Torsoli A. Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment. Pharmacol. Ther. 1995;9:309–313. doi: 10.1111/j.1365-2036.1995.tb00386.x. PubMed DOI

Scheppach W., Sommer H., Kirchner T., Paganelli G.M., Bartram P., Christl S., Richter F., Dusel G., Kasper H. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology. 1992;103:51–56. doi: 10.1016/0016-5085(92)91094-K. PubMed DOI

Simeoli R., Mattace Raso G., Pirozzi C., Lama A., Santoro A., Russo R., Montero-Melendez T., Berni Canani R., Calignano A., Perretti M., et al. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. Br. J. Pharmacol. 2017;174:1484–1496. doi: 10.1111/bph.13637. PubMed DOI PMC

Xu H.-M., Zhao H.-L., Guo G.-J., Xu J., Zhou Y.-L., Huang H.-L., Nie Y.-Q. Characterization of short-chain fatty acids in patients with ulcerative colitis: A meta-analysis. BMC Gastroenterol. 2022;22:117. doi: 10.1186/s12876-022-02191-3. PubMed DOI PMC

Machiels K., Joossens M., Sabino J., De Preter V., Arijs I., Eeckhaut V., Ballet V., Claes K., Van Immerseel F., Verbeke K., et al. A decrease of the butyrate-producing species Roseburia hominisand Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–1283. doi: 10.1136/gutjnl-2013-304833. PubMed DOI

Cleophas M., Ratter J., Bekkering S., Quintin J., Schraa K., Stroes E., Netea M., Joosten L. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci. Rep. 2019;9:775. doi: 10.1038/s41598-018-37246-7. PubMed DOI PMC

Jourova L., Anzenbacherova E., Dostal Z., Anzenbacher P., Briolotti P., Rigal E., Daujat-Chavanieu M., Gerbal-Chaloin S. Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome and hepatic drug metabolism. J. Nutr. Biochem. 2022;107:109042. doi: 10.1016/j.jnutbio.2022.109042. PubMed DOI

Little M., Dutta M., Li H., Matson A., Shi X., Mascarinas G., Molla B., Weigel K., Gu H., Mani S., et al. Understanding the physiological functions of the host xenobiotic-sensing nuclear receptors PXR and CAR on the gut microbiome using genetically modified mice. Acta Pharm. Sin. B. 2022;12:801–820. doi: 10.1016/j.apsb.2021.07.022. PubMed DOI PMC

Bergan T., Bjerke P.E.M., Fausa O. Pharmacokinetics of Metronidazole in Patients with Enteric Disease Compared to Normal Volunteers. Chemotherapy. 1981;27:233–238. doi: 10.1159/000237985. PubMed DOI

Hudcovic T., Stĕpánková R., Cebra J., Tlaskalová-Hogenová H. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol. 2001;46:565–572. doi: 10.1007/BF02818004. PubMed DOI

Hernández-Chirlaque C., Aranda C.J., Ocón B., Capitán-Cañadas F., Ortega-González M., Carrero J.J., Suárez M.D., Zarzuelo A., Sánchez de Medina F., Martínez-Augustin O. Germ-free and Antibiotic-treated Mice are Highly Susceptible to Epithelial Injury in DSS Colitis. J. Crohn’s Colitis. 2016;10:1324–1335. doi: 10.1093/ecco-jcc/jjw096. PubMed DOI

Vieira E.L.M., Leonel A.J., Sad A.P., Beltrão N.R.M., Costa T.F., Ferreira T.M.R., Gomes-Santos A.C., Faria A.M.C., Peluzio M.C.G., Cara D.C., et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J. Nutr. Biochem. 2012;23:430–436. doi: 10.1016/j.jnutbio.2011.01.007. PubMed DOI

Lake B. Biochemical Toxicology: A Practical Approach. Volume 183 IRL Press; Oxford, UK: 1987.

Schenkman J.B., Jansson I. Spectral Analysis of Cytochromes P450. In: Phillips I.R., Shephard E.A., editors. Methods Molecular Biology. Volume 120. Humana Press; Totowa, NJ, USA: 2006. pp. 11–18. PubMed

Tomankova V., Liskova B., Skalova L., Bartikova H., Bousova I., Jourova L., Anzenbacher P., Ulrichova J., Anzenbacherova E. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity. Life Sci. 2015;133:15–20. doi: 10.1016/j.lfs.2015.04.014. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace