Insight into ferromagnetic interactions in CuII-LnIII dimers with a compartmental ligand
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38205580
PubMed Central
PMC10845014
DOI
10.1039/d3dt03557c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In the last two decades, efforts have been devoted to obtaining insight into the magnetic interactions between CuII and LnIII utilizing experimental and theoretical means. Experimentally, it has been observed that the exchange coupling (J) in CuII-LnIII systems is often found to be ferromagnetic for ≥4f7 metal ions. However, exchange interactions at sub-Kelvin temperatures between CuII and the anisotropic/isotropic LnIII ions are not often explored. In this report, we have synthesized a series of heterobimetallic [CuLn(HL)(μ-piv)(piv)2] complexes (LnIII = Gd (1), Tb (2), Dy (3) and Er (4)) from a new compartmental Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,3-diamino-2-propanol (H3L). X-ray crystallographic analysis reveals that all four complexes are isostructural and isomorphous. Magnetic susceptibility measurements reveal a ferromagnetic coupling between the CuII ion and its respective LnIII ion for all the complexes, as often observed. Moreover, μ-SQUID studies, at sub-Kelvin temperatures, show S-shaped hysteresis loops indicating the presence of antiferromagnetic coupling in complexes 1-3. The antiferromagnetic interaction is explained by considering the shortest Cu⋯Cu distance in the crystal structure. The nearly closed loops for 1-3 highlight their fast relaxation characteristics, while the opened loops for 4 might arise from intermolecular ordering. CASSCF calculations allow the quantitative assessment of the interactions, which are further supported by BS-DFT calculations.
Department of Chemistry Panskura Banamali College Panskura RS WB 721152 India
Institute for Quantum Materials and Technology Eggenstein Leopoldshafen D 76344 Germany
Physikalisches Institut Karlsruhe Institute of Technology D 76131 Karlsruhe Germany
Zobrazit více v PubMed
Griffiths K. Kostakis G. E. Dalton Trans. 2018;47:12011–12034. doi: 10.1039/C8DT02362J. PubMed DOI
Aboshyan-Sorgho L. Besnard C. Pattison P. Kittilstved K. R. Aebischer A. Bünzli J. C. G. Hauser A. Piguet C. Angew. Chem., Int. Ed. 2011;50:4108–4112. doi: 10.1002/anie.201100095. PubMed DOI
Li X. F. Huang Y. B. Cao R. Cryst. Growth Des. 2012;12:3549–3556. doi: 10.1021/cg300362d. DOI
Andruh M. Costes J. P. Diaz C. Gao S. Inorg. Chem. 2009;48:3342–3359. doi: 10.1021/ic801027q. PubMed DOI
Ling B.-K. Zhai Y.-Q. Jin P.-B. Ding H.-F. Zhang X.-F. Lv Y. Fu Z. Deng J. Schulze M. Wernsdorfer W. Zheng Y.-Z. Matter. 2022;5:3485–3498. doi: 10.1016/j.matt.2022.07.009. DOI
Piquera L. R. Sañudo E. C. Dalton Trans. 2015;44:8771–8780. doi: 10.1039/C5DT00549C. PubMed DOI
An Z.-W. Gao Y.-Q. Xu S.-M. Zhang W. Yao M.-X. Cryst. Growth Des. 2023;23:1412–1421. doi: 10.1021/acs.cgd.2c00940. DOI
Li X.-L. Min F.-Y. Wang C. Lin S.-Y. Liu Z. Tang J. Inorg. Chem. 2015;54:4337–4344. doi: 10.1021/acs.inorgchem.5b00019. PubMed DOI
Shen F.-X. Pramanik K. Brandão P. Zhang Y.-Q. Jana N. C. Wang X.-Y. Panja A. Dalton Trans. 2020;49:14169–14179. doi: 10.1039/D0DT02778B. PubMed DOI
Pramanik K. Sun Y.-C. Brandão P. Jana N. C. Wang X.-Y. Panja A. New J. Chem. 2022;46:11722–11733. doi: 10.1039/D2NJ01017H. DOI
Swain A. Sharma T. Rajaraman G. Chem. Commun. 2023;59:3206–3228. doi: 10.1039/D2CC06041H. PubMed DOI
Chauhan D. Vignesh K. R. Swain A. Langley S. K. Murray K. S. Shanmugam M. Rajaraman G. Cryst. Growth Des. 2023;23:197–206. doi: 10.1021/acs.cgd.2c00888. DOI
Wang H. Liu S. Wei L. Deng G. Zhu H. Chen S. Yuan J. Jia L. Cryst. Growth Des. 2023;23:7432–7439. doi: 10.1021/acs.cgd.3c00829. DOI
Akhtar M. N. AlDamen M. A. McMillen C. D. Escuer A. Mayans J. Inorg. Chem. 2021;60:9302–9308. doi: 10.1021/acs.inorgchem.0c03682. PubMed DOI
Bencini A. Benelli C. Caneschi A. Carlin R. L. Dei A. Gatteschi D. J. Am. Chem. Soc. 1985;107:8128–8136. doi: 10.1021/ja00312a054. DOI
Ryazanov M. Nikiforov V. Lloret F. Julve M. Kuzmina N. Gleizes A. Inorg. Chem. 2002;41:1816–1823. doi: 10.1021/ic0110777. PubMed DOI
Margeat O. Lacroix P. G. Costes J. P. Donnadieu B. Lepetit C. Nakatani K. Inorg. Chem. 2004;43:4743–4750. doi: 10.1021/ic049801j. PubMed DOI
Costes J.-P. Dahan F. Dupuis A. Inorg. Chem. 2000;39:165–168. doi: 10.1021/ic990865h. PubMed DOI
He F. Tong M.-L. Chen X.-M. Inorg. Chem. 2005;44:8285–8292. doi: 10.1021/ic0507159. PubMed DOI
Costes J.-P. Dahan F. Dupuis A. Laurent J.-P. New J. Chem. 1998;22:1525–1529. doi: 10.1039/A803125H. DOI
Gupta T. Rajaraman G. Chem. Commun. 2016;52:8972–9008. doi: 10.1039/C6CC01251E. PubMed DOI
Osa S. Kido T. Matsumoto N. Re N. Pochaba A. Mrozinski J. J. Am. Chem. Soc. 2004;126:420–421. doi: 10.1021/ja037365e. PubMed DOI
Rauguth A. Kredel A. Carrella L. M. Rentschler E. Inorg. Chem. 2021;60:14031–14037. doi: 10.1021/acs.inorgchem.1c01356. PubMed DOI
Bar A. K. Kalita P. Singh M. K. Rajaraman G. Chandrasekhar V. Coord. Chem. Rev. 2018;367:163–216. doi: 10.1016/j.ccr.2018.03.022. DOI
Gatteschi D., Sessoli R. and Villain J., Molecular nanomagnets, Oxford University Press on Demand, 2006
Troiani F. Affronte M. Chem. Soc. Rev. 2011;40:3119–3129. doi: 10.1039/C0CS00158A. PubMed DOI
Atzori M. Sessoli R. J. Am. Chem. Soc. 2019;141:11339–11352. doi: 10.1021/jacs.9b00984. PubMed DOI
Moreno-Pineda E. Wernsdorfer W. Nat. Rev. Phys. 2021;3:645–659. doi: 10.1038/s42254-021-00340-3. DOI
Andruh M. Dalton Trans. 2015;44:16633–16653. doi: 10.1039/C5DT02661J. PubMed DOI
Mayans J. Saez Q. Font-Bardiabc M. Escuer A. Dalton Trans. 2019;48:641–652. doi: 10.1039/C8DT03679A. PubMed DOI
Vráblová A. Tomás M. Falvello L. R. Dlháň Ľ. Titiš J. Černák J. Boča R. Dalton Trans. 2019;48:13943–13952. doi: 10.1039/C9DT02122A. PubMed DOI
Modak R. Sikdar Y. Gómez-García C. J. Benmansour S. Chatterjee S. Goswami S. Chem. – Asian J. 2021;16:666–677. doi: 10.1002/asia.202001468. PubMed DOI
Dey A. Bag P. Kalita P. Chandrasekhar V. Coord. Chem. Rev. 2021;432:213707–213775. doi: 10.1016/j.ccr.2020.213707. DOI
Towatari M. Nishi K. Fujinami T. Matsumoto N. Sunatsuki Y. Kojima M. Mochida N. Ishida T. Re N. Mrozinski J. Inorg. Chem. 2013;52:6160–6178. doi: 10.1021/ic400594u. PubMed DOI
Pointillart F. Bernot K. Sessoli R. Gatteschi D. Chem. – Eur. J. 2007;13:1602–1609. doi: 10.1002/chem.200601194. PubMed DOI
Escobar L. B. L. Guedes G. P. Soriano S. Cassaro R. A. A. Marbey J. Hill S. Novak M. A. Andruh M. Vaz M. G. F. Inorg. Chem. 2018;57:326–334. doi: 10.1021/acs.inorgchem.7b02575. PubMed DOI
Moreno Pineda E. Chilton N. F. Tuna F. Winpenny R. E. P. McInnes E. J. L. Inorg. Chem. 2015;54:5930–5941. doi: 10.1021/acs.inorgchem.5b00746. PubMed DOI
Sorace L. Sangregorio C. Figuerola A. Benelli C. Gatteschi D. Chem. – Eur. J. 2009;15:1377–1388. doi: 10.1002/chem.200801638. PubMed DOI
Liu K. Shi W. Cheng P. Coord. Chem. Rev. 2015;289–290:74–122. doi: 10.1016/j.ccr.2014.10.004. DOI
Feltham H. L. C. Brooker S. Coord. Chem. Rev. 2014;276:1–33. doi: 10.1016/j.ccr.2014.05.011. DOI
Dey A. Acharya J. Chandrasekhar V. Chem. – Asian J. 2019;14:4433–4453. doi: 10.1002/asia.201900897. PubMed DOI
Brunet G. Safin D. A. Jover J. Ruiz E. Murugesu M. J. Mater. Chem. C. 2017;5:835–841. doi: 10.1039/C6TC04703C. DOI
Panja A. Jagličić Z. Herchel R. Brandão P. Pramanik K. Jana N. C. New J. Chem. 2022;46:5627–5637. doi: 10.1039/D1NJ05717K. DOI
Panja A. Jagličić Z. Herchel R. Brandão P. Pramanik K. Jana N. C. New J. Chem. 2022;46:13546–13557. doi: 10.1039/D2NJ01759H. DOI
Panja A. Jagličić Z. Herchel R. Brandão P. Jana N. C. New J. Chem. 2022;46:18751–18763. doi: 10.1039/D2NJ03793A. DOI
Pramanik K. Jagličić Z. Herchel R. Brandão P. Jana N. C. Panja A. Dalton Trans. 2023;52:1241–1256. doi: 10.1039/D2DT03354B. PubMed DOI
Novitchi G. Wernsdorfer W. Chibotaru L. F. Costes J. P. Anson C. E. Powell A. K. Angew. Chem., Int. Ed. 2009;48:1614–1619. doi: 10.1002/anie.200805176. PubMed DOI
Watanabe R. Fujiwara K. Okazawa A. Tanaka G. Yoshii S. Nojiri H. Ishida T. Chem. Commun. 2011;47:2110–2112. doi: 10.1039/C0CC04669H. PubMed DOI
Ishida T. Watanabe R. Fujiwara K. Okazawa A. Kojima N. Tanaka G. Yoshii S. Nojiri H. Dalton Trans. 2012;41:13609–13619. doi: 10.1039/C2DT31169K. PubMed DOI
Kettles F. J. Milway V. A. Tuna F. Valiente R. Thomas L. H. Wernsdorfer W. Ochsenbein S. T. Murrie M. Inorg. Chem. 2014;53:8970–8978. doi: 10.1021/ic500885r. PubMed DOI
Ida Y. Ghosh S. Ghosh A. Nojiri H. Ishida T. Inorg. Chem. 2015;54:9543–9555. doi: 10.1021/acs.inorgchem.5b01583. PubMed DOI
Cirera J. Ruiz E. C. R. Chim. 2008;11:1227–1234. doi: 10.1016/j.crci.2008.04.012. DOI
Costes J.-P. Dahan F. Dupuis A. Laurent J.-P. Inorg. Chem. 1997;36:3429–3433. doi: 10.1021/ic970264v. PubMed DOI
Wang S. Yang X. Qian J. Li Q. Chen Z. Zhang L. Huang S. Wang C. Jones R. A. Dalton Trans. 2017;46:1748–1752. doi: 10.1039/C6DT03830A. PubMed DOI
Biswas M. Sañudo E. C. Ray D. Inorg. Chem. 2021;60:11129–11139. doi: 10.1021/acs.inorgchem.1c01070. PubMed DOI
Akine S. Matsumoto T. Taniguchi T. Nabeshima T. Inorg. Chem. 2005;44:3270–3274. doi: 10.1021/ic0481677. PubMed DOI
Kido T. Nagasato S. Sunatsuki Y. Matsumoto N. Chem. Commun. 2000:2113–2114. doi: 10.1039/B006445I. PubMed DOI
Rajaraman G. Totti F. Bencini A. Caneschi A. Sessoli R. Gatteschi D. Dalton Trans. 2009:3153–3161. doi: 10.1039/B817540C. PubMed DOI
Shimada T. Okazawa A. Kojima N. Yoshii S. Nojiri H. Ishida T. Inorg. Chem. 2011;50:10555–10557. doi: 10.1021/ic201944s. PubMed DOI
Costes J.-P. Duhayon C. Mallet-Ladeira S. Shova S. Vendier L. Chem. – Eur. J. 2016;22:2171–2180. doi: 10.1002/chem.201504238. PubMed DOI
Rajeshkumar T. Annadata H. V. Evangelisti M. Langley S. K. Chilton N. F. Murray K. S. Rajaraman G. Inorg. Chem. 2015;54:1661–1670. doi: 10.1021/ic502651w. PubMed DOI
Ohmori H. Matsumoto A. Masui M. J. Chem. Soc., Perkin Trans. 2. 1980:347–357. doi: 10.1039/P29800000347. DOI
Sheldrick G. M., SADABS, University of Göttingen, Germany, 1996
Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008;64:112. doi: 10.1107/S0108767307043930. PubMed DOI
Aquilante F. Autschbach J. Baiardi A. Battaglia S. Borin V. A. Chibotaru L. F. Conti I. De Vico L. Delcey M. Fdez. Galván I. Ferré N. Freitag L. Garavelli M. Gong X. Knecht S. Larsson E. D. Lindh R. Lundberg M. Malmqvist P. A. Nenov A. Norell J. Odelius M. Olivucci M. Pedersen T. B. Pedraza-González L. Phung Q. M. Pierloot K. Reiher M. Schapiro I. Segarra-Martí J. Segatta F. Seijo L. Sen S. Sergentu D.-C. Stein C. J. Ungur L. Vacher M. Valentini A. Veryazov V. J. Chem. Phys. 2020;152:214117–214142. doi: 10.1063/5.0004835. PubMed DOI
Roos B. O. Lindh R. Malmqvist P.-Å. Veryazov V. Widmark P.-O. J. Phys. Chem. A. 2004;108:2851–2858. doi: 10.1021/jp031064+. DOI
Roos B. O. Lindh R. Malmqvist P.-Å. Veryazov V. Widmark P.-O. Borin A. C. J. Phys. Chem. A. 2008;112:11431–11435. doi: 10.1021/jp803213j. PubMed DOI
Widmark P. O. Malmqvist P. A. Roos B. O. Theor. Chim. Acta. 1990;77:291–306. doi: 10.1007/BF01120130. DOI
Malmqvist P. A. Roos B. O. Schimmelpfennig B. Chem. Phys. Lett. 2002;357:230–240. doi: 10.1016/S0009-2614(02)00498-0. DOI
Chibotaru L. F. Ungur L. J. Chem. Phys. 2012;137:064112. doi: 10.1063/1.4739763. PubMed DOI
Ungur L. Chibotaru L. F. Chem. – Eur. J. 2017;23:3708–3718. doi: 10.1002/chem.201605102. PubMed DOI
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022;12:e1606. PubMed PMC
van Wüllen C. J. Chem. Phys. 1998;109:392–399. doi: 10.1063/1.476576. DOI
Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/B508541A. PubMed DOI
Aravena D. Neese F. Pantazis D. A. J. Chem. Theory Comput. 2016;12:1148–1156. doi: 10.1021/acs.jctc.5b01048. PubMed DOI
Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/B515623H. PubMed DOI
Neese F. Wennmohs F. Hansen A. Becker U. Chem. Phys. 2009;356:98–109. doi: 10.1016/j.chemphys.2008.10.036. DOI
Becke A. D. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Caldeweyher E. Ehlert S. Hansen A. Neugebauer H. Spicher S. Bannwarth C. Grimme S. J. Chem. Phys. 2019;150:154122. doi: 10.1063/1.5090222. PubMed DOI
Momma K. Izumi F. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Winpenny R. E. P. Chem. Soc. Rev. 1998;27:447–452. doi: 10.1039/A827447Z. DOI
Pineda E. M. Tuna F. Zheng Y.-Z. Winpenny R. E. P. McInnes E. J. Inorg. Chem. 2013;52:13702–13707. doi: 10.1021/ic402296t. PubMed DOI
Chilton N. F. Anderson R. P. Turner L. D. Soncini A. Murray K. S. J. Comput. Chem. 2013;34:1164–1175. doi: 10.1002/jcc.23234. PubMed DOI
Andruh M. Ramade I. Codjovi E. Guillou O. Kahn O. Trombe J. C. J. Am. Chem. Soc. 1993;115:1822–1829. doi: 10.1021/ja00058a029. DOI
Costes J.-P. Shova S. Wernsdorfer W. Dalton Trans. 2008:1843–1849. doi: 10.1039/B716098D. PubMed DOI
Wernsdorfer W. Supercond. Sci. Technol. 2009;22:064013. doi: 10.1088/0953-2048/22/6/064013. DOI
Dolai M. Moreno-Pineda E. Wernsdorfer W. Ali M. Ghosh A. J. Phys. Chem. A. 2021;125:8230–8237. doi: 10.1021/acs.jpca.1c05991. PubMed DOI
Moreno-Pineda E. Taran G. Wernsdorfer W. Ruben M. Chem. Sci. 2019;10:5138–5145. doi: 10.1039/C9SC01062A. PubMed DOI PMC
Pineda E. M. Lan Y. Fuhr O. Wernsdorfer W. Ruben M. Chem. Sci. 2017;8:1178–1185. doi: 10.1039/C6SC03184F. PubMed DOI PMC
Jana N. C. Jagodič M. Brandão P. Patra M. Herchel R. Jagličić Z. Panja A. RSC Adv. 2023;13:11311–11323. doi: 10.1039/D3RA00737E. PubMed DOI PMC
Dutta B. Guizouarn T. Pointillart F. Kotrle K. Herchel R. Ray D. Dalton Trans. 2023;52:10402–10414. doi: 10.1039/D3DT01387A. PubMed DOI
Bhanja A. Smythe L. Herchel R. Nemec I. Murrie M. Ray D. Dalton Trans. 2021;50:5023–5035. doi: 10.1039/D0DT04168H. PubMed DOI
Kotrle K. Nemec I. Moncol J. Čižmár E. Herchel R. Dalton Trans. 2021;50:13883–13893. doi: 10.1039/D1DT01944A. PubMed DOI
Langley S. K. Ungur L. Chilton N. F. Moubaraki B. Chibotaru L. F. Murray K. S. Chem. – Eur. J. 2011;17:9209–9218. doi: 10.1002/chem.201100218. PubMed DOI
Lines M. E. J. Chem. Phys. 1971;55:2977–2984. doi: 10.1063/1.1676524. DOI