• This record comes from PubMed

Insight into ferromagnetic interactions in CuII-LnIII dimers with a compartmental ligand

. 2024 Feb 06 ; 53 (6) : 2501-2511. [epub] 20240206

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

In the last two decades, efforts have been devoted to obtaining insight into the magnetic interactions between CuII and LnIII utilizing experimental and theoretical means. Experimentally, it has been observed that the exchange coupling (J) in CuII-LnIII systems is often found to be ferromagnetic for ≥4f7 metal ions. However, exchange interactions at sub-Kelvin temperatures between CuII and the anisotropic/isotropic LnIII ions are not often explored. In this report, we have synthesized a series of heterobimetallic [CuLn(HL)(μ-piv)(piv)2] complexes (LnIII = Gd (1), Tb (2), Dy (3) and Er (4)) from a new compartmental Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,3-diamino-2-propanol (H3L). X-ray crystallographic analysis reveals that all four complexes are isostructural and isomorphous. Magnetic susceptibility measurements reveal a ferromagnetic coupling between the CuII ion and its respective LnIII ion for all the complexes, as often observed. Moreover, μ-SQUID studies, at sub-Kelvin temperatures, show S-shaped hysteresis loops indicating the presence of antiferromagnetic coupling in complexes 1-3. The antiferromagnetic interaction is explained by considering the shortest Cu⋯Cu distance in the crystal structure. The nearly closed loops for 1-3 highlight their fast relaxation characteristics, while the opened loops for 4 might arise from intermolecular ordering. CASSCF calculations allow the quantitative assessment of the interactions, which are further supported by BS-DFT calculations.

See more in PubMed

Griffiths K. Kostakis G. E. Dalton Trans. 2018;47:12011–12034. doi: 10.1039/C8DT02362J. PubMed DOI

Aboshyan-Sorgho L. Besnard C. Pattison P. Kittilstved K. R. Aebischer A. Bünzli J. C. G. Hauser A. Piguet C. Angew. Chem., Int. Ed. 2011;50:4108–4112. doi: 10.1002/anie.201100095. PubMed DOI

Li X. F. Huang Y. B. Cao R. Cryst. Growth Des. 2012;12:3549–3556. doi: 10.1021/cg300362d. DOI

Andruh M. Costes J. P. Diaz C. Gao S. Inorg. Chem. 2009;48:3342–3359. doi: 10.1021/ic801027q. PubMed DOI

Ling B.-K. Zhai Y.-Q. Jin P.-B. Ding H.-F. Zhang X.-F. Lv Y. Fu Z. Deng J. Schulze M. Wernsdorfer W. Zheng Y.-Z. Matter. 2022;5:3485–3498. doi: 10.1016/j.matt.2022.07.009. DOI

Piquera L. R. Sañudo E. C. Dalton Trans. 2015;44:8771–8780. doi: 10.1039/C5DT00549C. PubMed DOI

An Z.-W. Gao Y.-Q. Xu S.-M. Zhang W. Yao M.-X. Cryst. Growth Des. 2023;23:1412–1421. doi: 10.1021/acs.cgd.2c00940. DOI

Li X.-L. Min F.-Y. Wang C. Lin S.-Y. Liu Z. Tang J. Inorg. Chem. 2015;54:4337–4344. doi: 10.1021/acs.inorgchem.5b00019. PubMed DOI

Shen F.-X. Pramanik K. Brandão P. Zhang Y.-Q. Jana N. C. Wang X.-Y. Panja A. Dalton Trans. 2020;49:14169–14179. doi: 10.1039/D0DT02778B. PubMed DOI

Pramanik K. Sun Y.-C. Brandão P. Jana N. C. Wang X.-Y. Panja A. New J. Chem. 2022;46:11722–11733. doi: 10.1039/D2NJ01017H. DOI

Swain A. Sharma T. Rajaraman G. Chem. Commun. 2023;59:3206–3228. doi: 10.1039/D2CC06041H. PubMed DOI

Chauhan D. Vignesh K. R. Swain A. Langley S. K. Murray K. S. Shanmugam M. Rajaraman G. Cryst. Growth Des. 2023;23:197–206. doi: 10.1021/acs.cgd.2c00888. DOI

Wang H. Liu S. Wei L. Deng G. Zhu H. Chen S. Yuan J. Jia L. Cryst. Growth Des. 2023;23:7432–7439. doi: 10.1021/acs.cgd.3c00829. DOI

Akhtar M. N. AlDamen M. A. McMillen C. D. Escuer A. Mayans J. Inorg. Chem. 2021;60:9302–9308. doi: 10.1021/acs.inorgchem.0c03682. PubMed DOI

Bencini A. Benelli C. Caneschi A. Carlin R. L. Dei A. Gatteschi D. J. Am. Chem. Soc. 1985;107:8128–8136. doi: 10.1021/ja00312a054. DOI

Ryazanov M. Nikiforov V. Lloret F. Julve M. Kuzmina N. Gleizes A. Inorg. Chem. 2002;41:1816–1823. doi: 10.1021/ic0110777. PubMed DOI

Margeat O. Lacroix P. G. Costes J. P. Donnadieu B. Lepetit C. Nakatani K. Inorg. Chem. 2004;43:4743–4750. doi: 10.1021/ic049801j. PubMed DOI

Costes J.-P. Dahan F. Dupuis A. Inorg. Chem. 2000;39:165–168. doi: 10.1021/ic990865h. PubMed DOI

He F. Tong M.-L. Chen X.-M. Inorg. Chem. 2005;44:8285–8292. doi: 10.1021/ic0507159. PubMed DOI

Costes J.-P. Dahan F. Dupuis A. Laurent J.-P. New J. Chem. 1998;22:1525–1529. doi: 10.1039/A803125H. DOI

Gupta T. Rajaraman G. Chem. Commun. 2016;52:8972–9008. doi: 10.1039/C6CC01251E. PubMed DOI

Osa S. Kido T. Matsumoto N. Re N. Pochaba A. Mrozinski J. J. Am. Chem. Soc. 2004;126:420–421. doi: 10.1021/ja037365e. PubMed DOI

Rauguth A. Kredel A. Carrella L. M. Rentschler E. Inorg. Chem. 2021;60:14031–14037. doi: 10.1021/acs.inorgchem.1c01356. PubMed DOI

Bar A. K. Kalita P. Singh M. K. Rajaraman G. Chandrasekhar V. Coord. Chem. Rev. 2018;367:163–216. doi: 10.1016/j.ccr.2018.03.022. DOI

Gatteschi D., Sessoli R. and Villain J., Molecular nanomagnets, Oxford University Press on Demand, 2006

Troiani F. Affronte M. Chem. Soc. Rev. 2011;40:3119–3129. doi: 10.1039/C0CS00158A. PubMed DOI

Atzori M. Sessoli R. J. Am. Chem. Soc. 2019;141:11339–11352. doi: 10.1021/jacs.9b00984. PubMed DOI

Moreno-Pineda E. Wernsdorfer W. Nat. Rev. Phys. 2021;3:645–659. doi: 10.1038/s42254-021-00340-3. DOI

Andruh M. Dalton Trans. 2015;44:16633–16653. doi: 10.1039/C5DT02661J. PubMed DOI

Mayans J. Saez Q. Font-Bardiabc M. Escuer A. Dalton Trans. 2019;48:641–652. doi: 10.1039/C8DT03679A. PubMed DOI

Vráblová A. Tomás M. Falvello L. R. Dlháň Ľ. Titiš J. Černák J. Boča R. Dalton Trans. 2019;48:13943–13952. doi: 10.1039/C9DT02122A. PubMed DOI

Modak R. Sikdar Y. Gómez-García C. J. Benmansour S. Chatterjee S. Goswami S. Chem. – Asian J. 2021;16:666–677. doi: 10.1002/asia.202001468. PubMed DOI

Dey A. Bag P. Kalita P. Chandrasekhar V. Coord. Chem. Rev. 2021;432:213707–213775. doi: 10.1016/j.ccr.2020.213707. DOI

Towatari M. Nishi K. Fujinami T. Matsumoto N. Sunatsuki Y. Kojima M. Mochida N. Ishida T. Re N. Mrozinski J. Inorg. Chem. 2013;52:6160–6178. doi: 10.1021/ic400594u. PubMed DOI

Pointillart F. Bernot K. Sessoli R. Gatteschi D. Chem. – Eur. J. 2007;13:1602–1609. doi: 10.1002/chem.200601194. PubMed DOI

Escobar L. B. L. Guedes G. P. Soriano S. Cassaro R. A. A. Marbey J. Hill S. Novak M. A. Andruh M. Vaz M. G. F. Inorg. Chem. 2018;57:326–334. doi: 10.1021/acs.inorgchem.7b02575. PubMed DOI

Moreno Pineda E. Chilton N. F. Tuna F. Winpenny R. E. P. McInnes E. J. L. Inorg. Chem. 2015;54:5930–5941. doi: 10.1021/acs.inorgchem.5b00746. PubMed DOI

Sorace L. Sangregorio C. Figuerola A. Benelli C. Gatteschi D. Chem. – Eur. J. 2009;15:1377–1388. doi: 10.1002/chem.200801638. PubMed DOI

Liu K. Shi W. Cheng P. Coord. Chem. Rev. 2015;289–290:74–122. doi: 10.1016/j.ccr.2014.10.004. DOI

Feltham H. L. C. Brooker S. Coord. Chem. Rev. 2014;276:1–33. doi: 10.1016/j.ccr.2014.05.011. DOI

Dey A. Acharya J. Chandrasekhar V. Chem. – Asian J. 2019;14:4433–4453. doi: 10.1002/asia.201900897. PubMed DOI

Brunet G. Safin D. A. Jover J. Ruiz E. Murugesu M. J. Mater. Chem. C. 2017;5:835–841. doi: 10.1039/C6TC04703C. DOI

Panja A. Jagličić Z. Herchel R. Brandão P. Pramanik K. Jana N. C. New J. Chem. 2022;46:5627–5637. doi: 10.1039/D1NJ05717K. DOI

Panja A. Jagličić Z. Herchel R. Brandão P. Pramanik K. Jana N. C. New J. Chem. 2022;46:13546–13557. doi: 10.1039/D2NJ01759H. DOI

Panja A. Jagličić Z. Herchel R. Brandão P. Jana N. C. New J. Chem. 2022;46:18751–18763. doi: 10.1039/D2NJ03793A. DOI

Pramanik K. Jagličić Z. Herchel R. Brandão P. Jana N. C. Panja A. Dalton Trans. 2023;52:1241–1256. doi: 10.1039/D2DT03354B. PubMed DOI

Novitchi G. Wernsdorfer W. Chibotaru L. F. Costes J. P. Anson C. E. Powell A. K. Angew. Chem., Int. Ed. 2009;48:1614–1619. doi: 10.1002/anie.200805176. PubMed DOI

Watanabe R. Fujiwara K. Okazawa A. Tanaka G. Yoshii S. Nojiri H. Ishida T. Chem. Commun. 2011;47:2110–2112. doi: 10.1039/C0CC04669H. PubMed DOI

Ishida T. Watanabe R. Fujiwara K. Okazawa A. Kojima N. Tanaka G. Yoshii S. Nojiri H. Dalton Trans. 2012;41:13609–13619. doi: 10.1039/C2DT31169K. PubMed DOI

Kettles F. J. Milway V. A. Tuna F. Valiente R. Thomas L. H. Wernsdorfer W. Ochsenbein S. T. Murrie M. Inorg. Chem. 2014;53:8970–8978. doi: 10.1021/ic500885r. PubMed DOI

Ida Y. Ghosh S. Ghosh A. Nojiri H. Ishida T. Inorg. Chem. 2015;54:9543–9555. doi: 10.1021/acs.inorgchem.5b01583. PubMed DOI

Cirera J. Ruiz E. C. R. Chim. 2008;11:1227–1234. doi: 10.1016/j.crci.2008.04.012. DOI

Costes J.-P. Dahan F. Dupuis A. Laurent J.-P. Inorg. Chem. 1997;36:3429–3433. doi: 10.1021/ic970264v. PubMed DOI

Wang S. Yang X. Qian J. Li Q. Chen Z. Zhang L. Huang S. Wang C. Jones R. A. Dalton Trans. 2017;46:1748–1752. doi: 10.1039/C6DT03830A. PubMed DOI

Biswas M. Sañudo E. C. Ray D. Inorg. Chem. 2021;60:11129–11139. doi: 10.1021/acs.inorgchem.1c01070. PubMed DOI

Akine S. Matsumoto T. Taniguchi T. Nabeshima T. Inorg. Chem. 2005;44:3270–3274. doi: 10.1021/ic0481677. PubMed DOI

Kido T. Nagasato S. Sunatsuki Y. Matsumoto N. Chem. Commun. 2000:2113–2114. doi: 10.1039/B006445I. PubMed DOI

Rajaraman G. Totti F. Bencini A. Caneschi A. Sessoli R. Gatteschi D. Dalton Trans. 2009:3153–3161. doi: 10.1039/B817540C. PubMed DOI

Shimada T. Okazawa A. Kojima N. Yoshii S. Nojiri H. Ishida T. Inorg. Chem. 2011;50:10555–10557. doi: 10.1021/ic201944s. PubMed DOI

Costes J.-P. Duhayon C. Mallet-Ladeira S. Shova S. Vendier L. Chem. – Eur. J. 2016;22:2171–2180. doi: 10.1002/chem.201504238. PubMed DOI

Rajeshkumar T. Annadata H. V. Evangelisti M. Langley S. K. Chilton N. F. Murray K. S. Rajaraman G. Inorg. Chem. 2015;54:1661–1670. doi: 10.1021/ic502651w. PubMed DOI

Ohmori H. Matsumoto A. Masui M. J. Chem. Soc., Perkin Trans. 2. 1980:347–357. doi: 10.1039/P29800000347. DOI

Sheldrick G. M., SADABS, University of Göttingen, Germany, 1996

Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008;64:112. doi: 10.1107/S0108767307043930. PubMed DOI

Aquilante F. Autschbach J. Baiardi A. Battaglia S. Borin V. A. Chibotaru L. F. Conti I. De Vico L. Delcey M. Fdez. Galván I. Ferré N. Freitag L. Garavelli M. Gong X. Knecht S. Larsson E. D. Lindh R. Lundberg M. Malmqvist P. A. Nenov A. Norell J. Odelius M. Olivucci M. Pedersen T. B. Pedraza-González L. Phung Q. M. Pierloot K. Reiher M. Schapiro I. Segarra-Martí J. Segatta F. Seijo L. Sen S. Sergentu D.-C. Stein C. J. Ungur L. Vacher M. Valentini A. Veryazov V. J. Chem. Phys. 2020;152:214117–214142. doi: 10.1063/5.0004835. PubMed DOI

Roos B. O. Lindh R. Malmqvist P.-Å. Veryazov V. Widmark P.-O. J. Phys. Chem. A. 2004;108:2851–2858. doi: 10.1021/jp031064+. DOI

Roos B. O. Lindh R. Malmqvist P.-Å. Veryazov V. Widmark P.-O. Borin A. C. J. Phys. Chem. A. 2008;112:11431–11435. doi: 10.1021/jp803213j. PubMed DOI

Widmark P. O. Malmqvist P. A. Roos B. O. Theor. Chim. Acta. 1990;77:291–306. doi: 10.1007/BF01120130. DOI

Malmqvist P. A. Roos B. O. Schimmelpfennig B. Chem. Phys. Lett. 2002;357:230–240. doi: 10.1016/S0009-2614(02)00498-0. DOI

Chibotaru L. F. Ungur L. J. Chem. Phys. 2012;137:064112. doi: 10.1063/1.4739763. PubMed DOI

Ungur L. Chibotaru L. F. Chem. – Eur. J. 2017;23:3708–3718. doi: 10.1002/chem.201605102. PubMed DOI

Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022;12:e1606. PubMed PMC

van Wüllen C. J. Chem. Phys. 1998;109:392–399. doi: 10.1063/1.476576. DOI

Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297. doi: 10.1039/B508541A. PubMed DOI

Aravena D. Neese F. Pantazis D. A. J. Chem. Theory Comput. 2016;12:1148–1156. doi: 10.1021/acs.jctc.5b01048. PubMed DOI

Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057–1065. doi: 10.1039/B515623H. PubMed DOI

Neese F. Wennmohs F. Hansen A. Becker U. Chem. Phys. 2009;356:98–109. doi: 10.1016/j.chemphys.2008.10.036. DOI

Becke A. D. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Caldeweyher E. Ehlert S. Hansen A. Neugebauer H. Spicher S. Bannwarth C. Grimme S. J. Chem. Phys. 2019;150:154122. doi: 10.1063/1.5090222. PubMed DOI

Momma K. Izumi F. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Winpenny R. E. P. Chem. Soc. Rev. 1998;27:447–452. doi: 10.1039/A827447Z. DOI

Pineda E. M. Tuna F. Zheng Y.-Z. Winpenny R. E. P. McInnes E. J. Inorg. Chem. 2013;52:13702–13707. doi: 10.1021/ic402296t. PubMed DOI

Chilton N. F. Anderson R. P. Turner L. D. Soncini A. Murray K. S. J. Comput. Chem. 2013;34:1164–1175. doi: 10.1002/jcc.23234. PubMed DOI

Andruh M. Ramade I. Codjovi E. Guillou O. Kahn O. Trombe J. C. J. Am. Chem. Soc. 1993;115:1822–1829. doi: 10.1021/ja00058a029. DOI

Costes J.-P. Shova S. Wernsdorfer W. Dalton Trans. 2008:1843–1849. doi: 10.1039/B716098D. PubMed DOI

Wernsdorfer W. Supercond. Sci. Technol. 2009;22:064013. doi: 10.1088/0953-2048/22/6/064013. DOI

Dolai M. Moreno-Pineda E. Wernsdorfer W. Ali M. Ghosh A. J. Phys. Chem. A. 2021;125:8230–8237. doi: 10.1021/acs.jpca.1c05991. PubMed DOI

Moreno-Pineda E. Taran G. Wernsdorfer W. Ruben M. Chem. Sci. 2019;10:5138–5145. doi: 10.1039/C9SC01062A. PubMed DOI PMC

Pineda E. M. Lan Y. Fuhr O. Wernsdorfer W. Ruben M. Chem. Sci. 2017;8:1178–1185. doi: 10.1039/C6SC03184F. PubMed DOI PMC

Jana N. C. Jagodič M. Brandão P. Patra M. Herchel R. Jagličić Z. Panja A. RSC Adv. 2023;13:11311–11323. doi: 10.1039/D3RA00737E. PubMed DOI PMC

Dutta B. Guizouarn T. Pointillart F. Kotrle K. Herchel R. Ray D. Dalton Trans. 2023;52:10402–10414. doi: 10.1039/D3DT01387A. PubMed DOI

Bhanja A. Smythe L. Herchel R. Nemec I. Murrie M. Ray D. Dalton Trans. 2021;50:5023–5035. doi: 10.1039/D0DT04168H. PubMed DOI

Kotrle K. Nemec I. Moncol J. Čižmár E. Herchel R. Dalton Trans. 2021;50:13883–13893. doi: 10.1039/D1DT01944A. PubMed DOI

Langley S. K. Ungur L. Chilton N. F. Moubaraki B. Chibotaru L. F. Murray K. S. Chem. – Eur. J. 2011;17:9209–9218. doi: 10.1002/chem.201100218. PubMed DOI

Lines M. E. J. Chem. Phys. 1971;55:2977–2984. doi: 10.1063/1.1676524. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...