Magneto-structural studies on a number of doubly end-on cyanate and azide bridged dinuclear nickel(ii) complexes with {N3O} donor Schiff base ligands
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37057262
PubMed Central
PMC10088076
DOI
10.1039/d3ra00737e
PII: d3ra00737e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Two new doubly μ 1,1-N3 bridged (1 and 3) and six new doubly μ 1,1-NCO bridged NiII complexes (2, 4-8) with six different N3O donor Schiff base ligands have been synthesized and magneto-structurally characterized. All these neutral complex molecules are isostructural and constitute edge sharing bioctahedral structures. Magnetic studies revealed that all these complexes exhibit ferromagnetic interaction through bridging pseudohalides with ferromagnetic coupling constant J being significantly higher for azide-bridged complexes than that of the cyanate analogues. This is consistent with the literature reported data and also the presence of polarizable π systems and two different N and O donor atoms in cyanate ion, rendering it a poor magnetic coupler in comparison to azide analogues. Although, the magneto-structurally characterized doubly μ 1,1-N3 bridged NiII complexes are abundant, only few such complexes with μ 1,1-bridging NCO- ions are reported in the literature. Remarkably, addition of these six new examples in this ever-growing series of doubly μ 1,1-NCO bridged systems gives us an opportunity to analyse the precise magneto-structural correlation in this system, showing a general trend in which the J value increases with an increase in bridging angles. Therefore, the high degree of structural and magnetic resemblances by inclusion of six new examples in this series is the major achievement of the present work. An elaborate DFT study was performed resulting in magneto-structural correlation showing that nature and value of the J-parameter is defined not only by Ni-Nb-Ni bond angles, but an important role is also played by the Ni1-Ni2-Nb-Xt dihedral angle (Nb and Xt are bridging N and terminal N or O atom of bridging ligands, respectively).
Department of Chemistry Panskura Banamali College Panskura RS WB 721152 India
Faculty of Civil and Geodetic Engineering University of Ljubljana Jamova 2 1000 Ljubljana Slovenia
Institute of Mathematics Physics and Mechanics Jadranska 19 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Craig G. A. Murrie M. Chem. Soc. Rev. 2015;44:2135–2147. PubMed
Kostakis G. E. Ako A. M. Powell A. K. Chem. Soc. Rev. 2010;39:2238–2271. PubMed
Andruh M. Chem. Commun. 2018;54:3559–3577. PubMed
Mondal M. Ghosh S. Maity S. Giri S. Ghosh A. Inorg. Chem. Front. 2020;7:247–259.
Wang X.-Y. Wang Z.-M. Gao S. Chem. Commun. 2008:281–294. PubMed
Sarkar M. Clérac R. Mathonière C. Hearns N. G. R. Bertolasi V. Ray D. Inorg. Chem. 2011;50:3922–3933. PubMed
Aoki K. Otsubo K. Yoshida Y. Kimura Y. Sugimoto K. Kitagawa H. Inorg. Chem. 2021;60:16029–16034. PubMed
Jana N. C. Jagličić Z. Brandão P. Adak S. Saha A. Panja A. New J. Chem. 2021;45:7602–7613.
Khan S. Dutta T. Cortijo M. González-Prieto R. Drew M. G. B. Gomila R. M. Frontera A. Chattopadhyay S. CrystEngComm. 2021;23:1942–1952.
Sasmal S. Hazra S. Kundu P. Dutta S. Rajaraman G. Sañudo E. C. Mohanta S. Inorg. Chem. 2011;50:7257–7267. PubMed
Bhunia P. Maity S. Mayans J. Ghosh A. New J. Chem. 2022;46:4363–4372.
Jena H. S. Goswami S. Sanda S. Parshamoni S. Biswas S. Konar S. Dalton Trans. 2014;43:16996–16999. PubMed
Escuer A. Esteban J. Perlepes S. P. Stamatatos T. C. Coord. Chem. Rev. 2014;275:87–129.
Botana L. Ruiz J. Mota A. J. Rodríguez-Diéguez A. Seco J. M. Oyarzabal I. Colacio E. Dalton Trans. 2014;43:13509–13524. PubMed
Boča R. Coord. Chem. Rev. 2004;248:757–815.
Miklovič J. Valigura D. Boča R. Titiš J. Dalton Trans. 2015;44:12484–12487. PubMed
Maurice R. Inorg. Chem. 2021;60:6306–6318. PubMed
Drahoš B. Herchel R. Dalton Trans. 2022;51:18033–18044. PubMed
Escuer A. Vicente R. Fallah M. S. E. Solans X. Font-Bardia M. J. Chem. Soc., Dalton Trans. 1996:1013.
Mahendrasinh Z. Ankita S. Kumar S. B. Escuer A. Suresh E. Inorg. Chim. Acta. 2011;375:333–337.
Habib M. Karmakar T. K. Aromí G. Ribas-Ariño J. Fun H.-K. Chantrapromma S. Chandra S. K. Inorg. Chem. 2008;47:4109–4117. PubMed
Arriortua M. I. Cortes R. Mesa J. L. Lezama L. Rojo T. Villeneuve G. Transition Met. Chem. 1988;13:371–374.
Panja A. Jana N. C. Adak S. Brandão P. Dlháň L. Titiš J. Boča R. New J. Chem. 2017;41:3143–3153.
Patra M. Brandão P. Pikul A. P. Adak S. Panja A. ChemistrySelect. 2020;5:12924–12931.
Adak S. Sun Y.-C. Jana N. C. Brandão P. Wang X.-Y. Panja A. CrystEngComm. 2021;23:3371–3382.
Ruiz E. Cano J. Alvarez S. Alemany P. J. Am. Chem. Soc. 1998;120:11122–11129.
de Biani F. F. Ruiz E. Cano J. Novoa J. J. Alvarez S. Inorg. Chem. 2000;39:3221–3229. PubMed
Perlepe P. S. Cunha-Silva L. Gagnon K. J. Teat S. J. Lampropoulos C. Escuer A. Stamatatos T. C. Inorg. Chem. 2016;55:1270–1277. PubMed
Mahish M. K. Carrella L. M. Patra A. Saren D. Zangrando E. Vojtíšek P. Rentschler E. Manna S. C. New J. Chem. 2022;46:16899–16906.
Panja A. Adak S. Brandão P. Dlháň Ľ. Boča R. Eur. J. Inorg. Chem. 2020:2362–2371.
Panja A. Jagličić Z. Herchel R. Brandão P. Pramanik K. Jana N. C. New J. Chem. 2022;46:5627–5637.
Panja A. Jagličić Z. Herchel R. Brandão P. Pramanik K. Jana N. C. New J. Chem. 2022;46:13546–13557.
Sheldrick G. M., SADABS, University of Göttingen, Germany, 1996
Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008;64:112. PubMed
Massoud S. S. Louka F. R. Obaid Y. K. Vicente R. Ribas J. Fischerc R. C. Mautner F. A. Dalton Trans. 2013;42:3968–3978. PubMed
Barandika M. G. Cortés R. Lezama L. Urtiaga M. K. Arriortua M. I. Rojo T. J. Chem. Soc., Dalton Trans. 1999:2971–2976.
Mukherjee P. Drew M. G. B. Gómez-García C. J. Ghosh A. Inorg. Chem. 2009;48:5848–5860. PubMed
Dey S. K. Mondal N. Fallah M. S. E. Vicente R. Escuer A. Solans X. Font-Bardía M. Matsushita T. Gramlich V. Mitra S. Inorg. Chem. 2004;43:2427–2434. PubMed
Sarkar S. Mondal A. Fallah M. S. E. Ribas J. Chopra D. Stoeckli-Evans H. Rajak K. K. Polyhedron. 2006;25:25–30.
Nandi S. Bannerjee D. Wu J.-S. Lu T.-H. Slawin A. M. Z. Woollins J. D. Ribas J. Sinha C. Eur. J. Inorg. Chem. 2009:3972–3981.
Chaudhuri P. Wagner R. Khanra S. Weyhermüller T. Dalton Trans. 2006:4962–4968. PubMed
Bhattacharyya A. Bhaumik P. K. Das M. Bauzá A. Jana P. P. Harms K. Frontera A. Chattopadhyay S. Polyhedron. 2015;101:257–269.
Romanović M. Č. Čobeljić B. R. Pevec A. Turel I. Spasojević V. Tsaturyan A. A. Shcherbakov I. N. Anđelković K. K. Milenković M. Radanović D. Milenković M. R. Polyhedron. 2017;128:30–37.
Ghorai P. Brandão P. Benmansour S. Gómez García C. J. Saha A. Polyhedron. 2020;188:114708. PubMed
Chakrabarty P. P. Giri S. Schollmeyer D. Sakiyama H. Mikuriya M. Sarkar A. Saha S. Polyhedron. 2015;89:49–54.
Kou H.-Z. Hishiya S. Sato O. Inorg. Chim. Acta. 2008;361:2396–2406.
Sarkar S. Mondal A. Banerjee A. Chopra D. Ribas J. Rajak K. K. Polyhedron. 2006;25:2284–2288.
Sarkar S. Datta A. Mondal A. Chopra D. Ribas J. Rajak K. K. Sairam S. M. K Pati S. J. Phys. Chem. B. 2006;110:12–15. PubMed
Lin X.-J. Shen Z. Song Y. Xu H.-J. Li Y.-Z. You X.-Z. Inorg. Chim. Acta. 2005;358:1963–1969.
Sain S. Bid S. Usman A. Fun H.-K. Aromíc G. Solans X. Chandra S. K. Inorg. Chim. Acta. 2005;358:3362–3368.
Cortes R. Ruiz de Larramendi J. I. Lezama L. Rojo T. Urtiaga K. Arriortua M. I. J. Chem. Soc., Dalton trans. 1992:2723–2728.
Vicente R. Escuer A. Ribas J. Fallah M. S. E. Solans X. Font-Bardia M. Inorg. Chem. 1993;32:1920–1924.
Ribas J. Monfort M. Diaz C. Bastos C. Solans X. Inorg. Chem. 1994;33:484–489.
Escuer A. Vicente R. Ribas J. Solans X. Inorg. Chem. 1995;34:1793–1798.
Donmez A. Oylumluoglu G. Coban M. B. Kocak C. Aygun M. Kara H. J. Mol. Struct. 2017;1149:569–575. PubMed
Chilton N. F. Anderson R. P. Turner L. D. Soncini A. Murray K. S. J. Comput. Chem. 2013;34:1164–1175. PubMed
Manca G. Cano J. Ruiz E. Inorg. Chem. 2009;48:3139–3144. PubMed
Bian H.-D. Gu W. Yu Q. Yan S.-P. Liao D.-Z. Jiang Z.-H. Cheng P. Polyhedron. 2005;24:2002–2008.
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022;12:e1606. PubMed PMC
Ruiz E. Cano J. Alvarez S. Alemany P. J. Comput. Chem. 1999;20:1391–1400.
Soda T. Kitagawa Y. Onishi T. Takano Y. Shigeta Y. Nagao H. Yoshioka Y. Yamaguchi K. Chem. Phys. Lett. 2000;319:223–230.
Becke A. D. Phys. Rev. A. 1988;38:3098–3100. PubMed
Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. PubMed
Stephens P. J. Devlin F. J. Chabalowski C. F. Frisch M. J. J. Phys. Chem. 2002;98:11623–11627.
Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.
Havlíček L. Herchel R. Nemec I. Neugebauer P. Polyhedron. 2022;223:115962.
Bhanja A. Smythe L. Herchel R. Nemec I. Murrie M. Ray D. Dalton Trans. 2021;50:5023–5035. PubMed
Rybníčková B. Kuchár J. Antal P. Herchel R. Inorganica Chim. Acta. 2020;509:119689.
Herchel R. Nemec I. Machata M. Trávníček Z. Inorg. Chem. 2015;54:8625–8638. PubMed
Zlatar M. Vlahović F. Mitić D. Zlatović M. Gruden M. J. Serbian Chem. Soc. 2020;85:1577–1590.
van Wüllen C. J. Chem. Phys. 1998;109:392–399.
Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. PubMed
Macrae C. F. Sovago I. Cottrell S. J. Galek P. T. A. McCabe P. Pidcock E. Platings M. Shields G. P. Stevens J. S. Towler M. Wood P. A. J. Appl. Crystallogr. 2020;53:226–235. PubMed PMC
Groom C. R. Bruno I. J. Lightfoot M. P. Ward S. C. Acta. Crystallogr. B. Struct. 2016;72:171–179. PubMed PMC
Insight into ferromagnetic interactions in CuII-LnIII dimers with a compartmental ligand