Butyrate Treatment of DSS-Induced Ulcerative Colitis Affects the Hepatic Drug Metabolism in Mice
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
35928257
PubMed Central
PMC9343805
DOI
10.3389/fphar.2022.936013
PII: 936013
Knihovny.cz E-resources
- Keywords
- butyrate, cytochromes P450, drug metabolism, gut inflammation, gut–liver axis,
- Publication type
- Journal Article MeSH
The development of inflammatory bowel disease (IBD) is associated with alterations in the gut microbiota. There is currently no universal treatment for this disease, thus emphasizing the importance of developing innovative therapeutic approaches. Gut microbiome-derived metabolite butyrate with its well-known anti-inflammatory effect in the gut is a promising candidate. Due to increased intestinal permeability during IBD, butyrate may also reach the liver and influence liver physiology, including hepatic drug metabolism. To get an insight into this reason, the aim of this study was set to clarify not only the protective effects of the sodium butyrate (SB) administration on colonic inflammation but also the effects of SB on hepatic drug metabolism in experimental colitis induced by dextran sodium sulfate (DSS) in mice. It has been shown here that the butyrate pre-treatment can alleviate gut inflammation and reduce the leakiness of colonic epithelium by restoration of the assembly of tight-junction protein Zonula occludens-1 (ZO-1) in mice with DSS-induced colitis. In this article, butyrate along with inflammation has also been shown to affect the expression and enzyme activity of selected cytochromes P450 (CYPs) in the liver of mice. In this respect, CYP3A enzymes may be very sensitive to gut microbiome-targeted interventions, as significant changes in CYP3A expression and activity in response to DSS-induced colitis and/or butyrate treatment have also been observed. With regard to medications used in IBD and microbiota-targeted therapeutic approaches, it is important to deepen our knowledge of the effect of gut inflammation, and therapeutic interventions were followed concerning the ability of the organism to metabolize drugs. This gut-liver axis, mediated through inflammation as well as microbiome-derived metabolites, may affect the response to IBD therapy.
See more in PubMed
Anzenbacher P., Anzenbacherová E. (2001). Cytochromes P450 and Metabolism of Xenobiotics. Cell Mol. Life Sci. 58, 737–747. 10.1007/pl00000897 PubMed DOI PMC
Argollo M., Gilardi D., Peyrin-Biroulet C., Chabot J. F., Peyrin-Biroulet L., Danese S. (2019). Comorbidities in Inflammatory Bowel Disease: a Call for Action. Lancet Gastroenterol. Hepatol. 4, 643–654. 10.1016/s2468-1253(19)30173-6 PubMed DOI
Bach Knudsen K. E., Lærke H. N., Hedemann M. S., Nielsen T. S., Ingerslev A. K., Gundelund Nielsen D. S., et al. (2018). Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients 10. 1499, 10.3390/nu10101499 PubMed DOI PMC
Baumann A., Jin C. J., Brandt A., Sellmann C., Nier A., Burkard M., et al. (2020). Oral Supplementation of Sodium Butyrate Attenuates the Progression of Non-alcoholic Steatohepatitis. Nutrients 12. 951. 10.3390/nu12040951 PubMed DOI PMC
Bergan T., Bjerke P. E., Fausa O. (1981). Pharmacokinetics of Metronidazole in Patients with Enteric Disease Compared to Normal Volunteers. Chemotherapy 27, 233–238. 10.1159/000237985 PubMed DOI
Canani R. B., Costanzo M. D., Leone L., Pedata M., Meli R., Calignano A. (2011). Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. 17, 1519–1528. 10.3748/wjg.v17.i12.1519 PubMed DOI PMC
Chang J. T. (2020). Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 383, 2652–2664. 10.1056/NEJMra2002697 PubMed DOI
Chang P. V., Hao L., Offermanns S., Medzhitov R. (2014). The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proc. Natl. Acad. Sci. U. S. A. 111, 2247–2252. 10.1073/pnas.1322269111 PubMed DOI PMC
Christmas P. (2015). Role of Cytochrome P450s in Inflammation. Adv. Pharmacol. 74, 163–192. 10.1016/bs.apha.2015.03.005 PubMed DOI
Cleophas M. C. P., Ratter J. M., Bekkering S., Quintin J., Schraa K., Stroes E. S., et al. (2019). Effects of Oral Butyrate Supplementation on Inflammatory Potential of Circulating Peripheral Blood Mononuclear Cells in Healthy and Obese Males. Sci. Rep. 9, 775. 10.1038/s41598-018-37246-7 PubMed DOI PMC
Cooper H. S., Murthy S. N., Shah R. S., Sedergran D. J. (1993). Clinicopathologic Study of Dextran Sulfate Sodium Experimental Murine Colitis. Laboratory investigation; a J. Tech. methods pathology 69, 238–249. PubMed
De Preter V., Arijs I., Windey K., Vanhove W., Vermeire S., Schuit F., et al. (2012). Impaired Butyrate Oxidation in Ulcerative Colitis Is Due to Decreased Butyrate Uptake and a Defect in the Oxidation Pathway. Inflamm. Bowel Dis. 18, 1127–1136. 10.1002/ibd.21894 PubMed DOI
Di Sabatino A., Morera R., Ciccocioppo R., Cazzola P., Gotti S., Tinozzi F. P., et al. (2005). Oral Butyrate for Mildly to Moderately Active Crohn's Disease. Aliment. Pharmacol. Ther. 22, 789–794. 10.1111/j.1365-2036.2005.02639.x PubMed DOI
Ding Y., Yanagi K., Cheng C., Alaniz R. C., Lee K., Jayaraman A. (2019). Interactions between Gut Microbiota and Non-alcoholic Liver Disease: The Role of Microbiota-Derived Metabolites. Pharmacol. Res. 141, 521–529. 10.1016/j.phrs.2019.01.029 PubMed DOI PMC
Fan X., Ding X., Zhang Q. Y. (2020). Hepatic and Intestinal Biotransformation Gene Expression and Drug Disposition in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Acta Pharm. Sin. B 10, 123–135. 10.1016/j.apsb.2019.12.002 PubMed DOI PMC
Fan Y., Pedersen O. (2021). Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 19, 55–71. 10.1038/s41579-020-0433-9 PubMed DOI
Farrell R. J. (2019). Biologics beyond Anti-TNF Agents for Ulcerative Colitis - Efficacy, Safety, and Cost? N. Engl. J. Med. 381, 1279–1281. 10.1056/NEJMe1910742 PubMed DOI
Franzosa E. A., Sirota-Madi A., Avila-Pacheco J., Fornelos N., Haiser H. J., Reinker S., et al. (2019). Gut Microbiome Structure and Metabolic Activity in Inflammatory Bowel Disease. Nat. Microbiol. 4, 293–305. 10.1038/s41564-018-0306-4 PubMed DOI PMC
Gäbele E., Dostert K., Hofmann C., Wiest R., Schölmerich J., Hellerbrand C., et al. (2011). DSS Induced Colitis Increases Portal LPS Levels and Enhances Hepatic Inflammation and Fibrogenesis in Experimental NASH. J. Hepatol. 55, 1391–1399. 10.1016/j.jhep.2011.02.035 PubMed DOI
Gill P. A., van Zelm M. C., Muir J. G., Gibson P. R. (2018). Review Article: Short Chain Fatty Acids as Potential Therapeutic Agents in Human Gastrointestinal and Inflammatory Disorders. Aliment. Pharmacol. Ther. 48, 15–34. 10.1111/apt.14689 PubMed DOI
Glassner K. L., Abraham B. P., Quigley E. M. M. (2020). The Microbiome and Inflammatory Bowel Disease. J. Allergy Clin. Immunol. 145, 16–27. 10.1016/j.jaci.2019.11.003 PubMed DOI
Hallert C., Björck I., Nyman M., Pousette A., Grännö C., Svensson H. (2003). Increasing Fecal Butyrate in Ulcerative Colitis Patients by Diet: Controlled Pilot Study. Inflamm. Bowel Dis. 9, 116–121. 10.1097/00054725-200303000-00005 PubMed DOI
Hamer H. M., Jonkers D. M., Vanhoutvin S. A., Troost F. J., Rijkers G., de Bruïne A., et al. (2010). Effect of Butyrate Enemas on Inflammation and Antioxidant Status in the Colonic Mucosa of Patients with Ulcerative Colitis in Remission. Clin. Nutr. 29, 738–744. 10.1016/j.clnu.2010.04.002 PubMed DOI
Han L. W., Wang L., Shi Y., Dempsey J. L., Pershutkina O. V., Dutta M., et al. (2020). Impact of Microbiome on Hepatic Metabolizing Enzymes and Transporters in Mice during Pregnancy. Drug metabolism Dispos. Biol. fate Chem. 48, 708–722. 10.1124/dmd.120.000039 PubMed DOI PMC
Hashimoto E., Ideta M., Taniai M., Watanabe U., Okuda H., Nagasako K., et al. (1993). Prevalence of Primary Sclerosing Cholangitis and Other Liver Diseases in Japanese Patients with Chronic Ulcerative Colitis. J. Gastroenterol. Hepatol. 8, 146–149. 10.1111/j.1440-1746.1993.tb01506.x PubMed DOI
Hatayama H., Iwashita J., Kuwajima A., Abe T. (2007). The Short Chain Fatty Acid, Butyrate, Stimulates MUC2 Mucin Production in the Human Colon Cancer Cell Line, LS174T. Biochem. Biophys. Res. Commun. 356. 599–603. PubMed
Hernandez J. P., Mota L. C., Huang W., Moore D. D., Baldwin W. S. (2009). Sexually Dimorphic Regulation and Induction of P450s by the Constitutive Androstane Receptor (CAR). Toxicology 256. 53–64. 10.1016/j.tox.2008.11.002 PubMed DOI PMC
Hills R. D., Jr., Pontefract B. A., Mishcon H. R., Black C. A., Sutton S. C., Theberge C. R. (2019). Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 11. 1613. 10.3390/nu11071613 PubMed DOI PMC
Holloway M. G., Laz E. V., Waxman D. J. (2006). Codependence of Growth Hormone-Responsive, Sexually Dimorphic Hepatic Gene Expression on Signal Transducer and Activator of Transcription 5b and Hepatic Nuclear Factor 4alpha. Mol. Endocrinol. 20, 647–660. 10.1210/me.2005-0328 PubMed DOI
Hudcovic T., Kolinska J., Klepetar J., Stepankova R., Rezanka T., Srutkova D., et al. (2012). Protective Effect of Clostridium Tyrobutyricum in Acute Dextran Sodium Sulphate-Induced Colitis: Differential Regulation of Tumour Necrosis Factor-α and Interleukin-18 in BALB/c and Severe Combined Immunodeficiency Mice. Clin. Exp. Immunol. 167, 356–365. 10.1111/j.1365-2249.2011.04498.x PubMed DOI PMC
Hudcovic T., Stĕpánková R., Cebra J., Tlaskalová-Hogenová H. (2001). The Role of Microflora in the Development of Intestinal Inflammation: Acute and Chronic Colitis Induced by Dextran Sulfate in Germ-free and Conventionally Reared Immunocompetent and Immunodeficient Mice. Folia Microbiol. (Praha) 46, 565–572. 10.1007/bf02818004 PubMed DOI
Jakubczyk D., Leszczyńska K., Górska S. (2020). The Effectiveness of Probiotics in the Treatment of Inflammatory Bowel Disease (IBD)-A Critical Review. Nutrients 12. 1973. 10.3390/nu12071973 PubMed DOI PMC
Ji J., Shu D., Zheng M., Wang J., Luo C., Wang Y., et al. (2016). Microbial Metabolite Butyrate Facilitates M2 Macrophage Polarization and Function. Sci. Rep. 6, 24838. 10.1038/srep24838 PubMed DOI PMC
Jin C. J., Engstler A. J., Sellmann C., Ziegenhardt D., Landmann M., Kanuri G., et al. (2016). Sodium Butyrate Protects Mice from the Development of the Early Signs of Non-alcoholic Fatty Liver Disease: Role of Melatonin and Lipid Peroxidation. Br. J. Nutr. 23, 1–12. 10.1017/s0007114516004025 PubMed DOI
Jourova L., Anzenbacher P., Anzenbacherova E. (2016). Human Gut Microbiota Plays a Role in the Metabolism of Drugs. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 160, 317–326. 10.5507/bp.2016.039 PubMed DOI
Jourova L., Anzenbacher P., Matuskova Z., Vecera R., Strojil J., Kolar M., et al. (2019). Gut Microbiota Metabolizes Nabumetone In Vitro: Consequences for its Bioavailability In Vivo in the Rodents with Altered Gut Microbiome. Xenobiotica; fate foreign Compd. Biol. Syst. 49, 1296–1302. 10.1080/00498254.2018.1558310 PubMed DOI
Jourova L., Anzenbacherova E., Dostal Z., Anzenbacher P., Briolotti P., Rigal E., et al. (2022). Butyrate, a Typical Product of Gut Microbiome, Affects Function of the AhR Gene, Being a Possible Agent of Crosstalk between Gut Microbiome, and Hepatic Drug Metabolism. J. Nutr. Biochem. 107, 109042. 10.1016/j.jnutbio.2022.109042 PubMed DOI
Jourová L., Vavreckova M., Zemanova N., Anzenbacher P., Langova K., Hermanova P., et al. (2020b). Gut Microbiome Alters the Activity of Liver Cytochromes P450 in Mice with Sex-dependent Differences. Front. Pharmacol. 11, 01303. 10.3389/fphar.2020.01303 PubMed DOI PMC
Jourová L., Anzenbacher P., Lišková B., Matušková Z., Hermanová P., Hudcovic T., et al. (2017). Colonization by Non-pathogenic Bacteria Alters mRNA Expression of Cytochromes P450 in Originally Germ-free Mice. Folia Microbiol. 62, 463–469. 10.1007/s12223-017-0517-8 PubMed DOI
Jourová L., Lišková B., Lněničková K., Zemanová N., Anzenbacher P., Hermanová P., et al. (2020a). Presence or Absence of Microbiome Modulates the Response of Mice Organism to Administered Drug Nabumetone. Physiol. Res. 69, 583–594. 10.33549/physiolres.934607 PubMed DOI PMC
Kawauchi S., Nakamura T., Miki I., Inoue J., Hamaguchi T., Tanahashi T., et al. (2014). Downregulation of CYP3A and P-Glycoprotein in the Secondary Inflammatory Response of Mice with Dextran Sulfate Sodium-Induced Colitis and its Contribution to Cyclosporine A Blood Concentrations. J. Pharmacol. Sci. 124, 180–191. 10.1254/jphs.13141fp PubMed DOI
Kronbach T., Mathys D., Umeno M., Gonzalez F. J., Meyer U. A. (1989). Oxidation of Midazolam and Triazolam by Human Liver Cytochrome P450IIIA4. Mol. Pharmacol. 36, 89–96. PubMed
Kusunoki Y., Ikarashi N., Hayakawa Y., Ishii M., Kon R., Ochiai W., et al. (2014). Hepatic Early Inflammation Induces Downregulation of Hepatic Cytochrome P450 Expression and Metabolic Activity in the Dextran Sulfate Sodium-Induced Murine Colitis. Eur. J. Pharm. Sci. official J. Eur. Fed. Pharm. Sci. 54, 17–27. 10.1016/j.ejps.2013.12.019 PubMed DOI
Laserna-Mendieta E. J., Clooney A. G., Carretero-Gomez J. F., Moran C., Sheehan D., Nolan J. A., et al. (2018). Determinants of Reduced Genetic Capacity for Butyrate Synthesis by the Gut Microbiome in Crohn's Disease and Ulcerative Colitis. J. Crohns Colitis 12, 204–216. 10.1093/ecco-jcc/jjx137 PubMed DOI
Latteri M., Angeloni G., Silveri N. G., Manna R., Gasbarrini G., Navarra P. (2001). Pharmacokinetics of Cyclosporin Microemulsion in Patients with Inflammatory Bowel Disease. Clin. Pharmacokinet. 40, 473–483. 10.2165/00003088-200140060-00006 PubMed DOI
Lee J. G., Lee J., Lee A. R., Jo S. V., Park C. H., Han D. S., et al. (2022). Impact of Short-Chain Fatty Acid Supplementation on Gut Inflammation and Microbiota Composition in a Murine Colitis Model. J. Nutr. Biochem. 101, 108926. 10.1016/j.jnutbio.2021.108926 PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
Lührs H., Gerke T., Müller J. G., Melcher R., Schauber J., Boxberger F., et al. (2002). Butyrate Inhibits NF-Κb Activation in Lamina Propria Macrophages of Patients with Ulcerative Colitis. Scand. J. gastroenterology 37, 458–466. 10.1080/003655202317316105 PubMed DOI
Martín R., Miquel S., Chain F., Natividad J. M., Jury J., Lu J., et al. (2015). Faecalibacterium Prausnitzii Prevents Physiological Damages in a Chronic Low-Grade Inflammation Murine Model. BMC Microbiol. 15, 67. 10.1186/s12866-015-0400-1 PubMed DOI PMC
Mattace Raso G., Simeoli R., Russo R., Iacono A., Santoro A., Paciello O., et al. (2013). Effects of Sodium Butyrate and its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet. PloS one 8, e68626. 10.1371/journal.pone.0068626 PubMed DOI PMC
Meisel M., Mayassi T., Fehlner-Peach H., Koval J. C., O'Brien S. L., Hinterleitner R., et al. (2017). Interleukin-15 Promotes Intestinal Dysbiosis with Butyrate Deficiency Associated with Increased Susceptibility to Colitis. ISME J. 11, 15–30. 10.1038/ismej.2016.114 PubMed DOI PMC
Mentella M. C., Scaldaferri F., Pizzoferrato M., Gasbarrini A., Miggiano G. A. D. (2020). Nutrition, IBD and Gut Microbiota: A Review. Nutrients 12 (4), 944. 10.3390/nu12040944 PubMed DOI PMC
Miao W., Wu X., Wang K., Wang W., Wang Y., Li Z., et al. (2016). Sodium Butyrate Promotes Reassembly of Tight Junctions in Caco-2 Monolayers Involving Inhibition of MLCK/MLC2 Pathway and Phosphorylation of PKCβ2. Int. J. Mol. Sci. 17. 1696. 10.3390/ijms17101696 PubMed DOI PMC
Nakajima M., Yokoi T. (2011). MicroRNAs from Biology to Future Pharmacotherapy: Regulation of Cytochrome P450s and Nuclear Receptors. Pharmacol. Ther. 131, 330–337. 10.1016/j.pharmthera.2011.04.009 PubMed DOI
Pastorelli L., De Salvo C., Mercado J. R., Vecchi M., Pizarro T. T. (2013). Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Front. Immunol. 4, 280. 10.3389/fimmu.2013.00280 PubMed DOI PMC
Peng L., Li Z. R., Green R. S., Holzman I. R., Lin J. (2009). Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. J. Nutr. 139, 1619–1625. 10.3945/jn.109.104638 PubMed DOI PMC
Phillips I. R., Shephard E. A. (2006). Cytochrome P450 Protocols. Totowa, NJ: Humana Press.
Prokop J., Anzenbacher P., Mrkvicová E., Pavlata L., Zapletalová I., Šťastník I., et al. (2018). In Vivo evaluation of Effect of Anthocyanin-Rich Wheat on Rat Liver Microsomal Drug-Metabolizing Cytochromes P450 and on Biochemical and Antioxidant Parameters in Rats. Food Chem. Toxicol. Int. J. Publ. Br. Industrial Biol. Res. Assoc. 122, 225–233. 10.1016/j.fct.2018.10.029 PubMed DOI
Rieger J. K., Klein K., Winter S., Zanger U. M. (2013). Expression Variability of Absorption, Distribution, Metabolism, Excretion-Related microRNAs in Human Liver: Influence of Nongenetic Factors and Association with Gene Expression. Drug metabolism Dispos. Biol. fate Chem. 41, 1752–1762. 10.1124/dmd.113.052126 PubMed DOI
Schenkman J. B., Jansson I. (2006). Spectral Analyses of Cytochromes P450. Methods Mol. Biol. 320, 11–18. 10.1385/1-59259-998-2:11 PubMed DOI
Scheppach W., Sommer H., Kirchner T., Paganelli G. M., Bartram P., Christl S., et al. (1992). Effect of Butyrate Enemas on the Colonic Mucosa in Distal Ulcerative Colitis. Gastroenterology 103, 51–56. 10.1016/0016-5085(92)91094-k PubMed DOI
Schmith V. D., Foss J. F. (2010). Inflammation: Planning for a Source of Pharmacokinetic/pharmacodynamic Variability in Translational Studies. Clin. Pharmacol. Ther. 87, 488–491. 10.1038/clpt.2009.258 PubMed DOI
Schulzke J. D., Ploeger S., Amasheh M., Fromm A., Zeissig S., Troeger H., et al. (2009). Epithelial Tight Junctions in Intestinal Inflammation. Ann. N. Y. Acad. Sci. 1165, 294–300. 10.1111/j.1749-6632.2009.04062.x PubMed DOI
Schwarzer M., Makki K., Storelli G., Machuca-Gayet I., Srutkova D., Hermanova P., et al. (2016). Lactobacillus Plantarum Strain Maintains Growth of Infant Mice during Chronic Undernutrition. Science 351, 854–857. 10.1126/science.aad8588 PubMed DOI
Selwyn F. P., Cheng S. L., Klaassen C. D., Cui J. Y. (2016). Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-free Mice by Conventionalization and Probiotics. Drug metabolism Dispos. Biol. fate Chem. 44, 262–274. 10.1124/dmd.115.067504 PubMed DOI PMC
Selwyn F. P., Cui J. Y., Klaassen C. D. (2015). RNA-seq Quantification of Hepatic Drug Processing Genes in Germ-free Mice. Drug metabolism Dispos. Biol. fate Chem. 43, 1572–1580. 10.1124/dmd.115.063545 PubMed DOI PMC
Singh S., George J., Boland B. S., Vande Casteele N., Sandborn W. J. (2018). Primary Non-response to Tumor Necrosis Factor Antagonists Is Associated with Inferior Response to Second-Line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. J. Crohns Colitis 12, 635–643. 10.1093/ecco-jcc/jjy004 PubMed DOI PMC
Steinhart A. H., Hiruki T., Brzezinski A., Baker J. P. (1996). Treatment of Left-Sided Ulcerative Colitis with Butyrate Enemas: a Controlled Trial. Aliment. Pharmacol. Ther. 10, 729–736. 10.1046/j.1365-2036.1996.d01-509.x PubMed DOI
Tarrerias A. L., Millecamps M., Alloui A., Beaughard C., Kemeny J. L., Bourdu S., et al. (2002). Short-chain Fatty Acid Enemas Fail to Decrease Colonic Hypersensitivity and Inflammation in TNBS-Induced Colonic Inflammation in Rats. Pain 100, 91–97. 10.1016/s0304-3959(02)00234-8 PubMed DOI
Tlaskalova-Hogenova H., Tuckova L., Mestecky J., Kolinska J., Rossmann P., Stepankova R., et al. (2005). Interaction of Mucosal Microbiota with the Innate Immune System. Scand. J. Immunol. 62 (1), 106–113. 10.1111/j.1365-3083.2005.01618.x PubMed DOI
Togao M., Tajima S., Kurakawa T., Wagai G., Otsuka J., Kado S., et al. (2021). Normal Variation of the Gut Microbiota Affects Hepatic Cytochrome P450 Activity in Mice. Pharmacol. Res. Perspect. 9, e00893. 10.1002/prp2.893 PubMed DOI PMC
Vernia P., Marcheggiano A., Caprilli R., Frieri G., Corrao G., Valpiani D., et al. (1995). Short-chain Fatty Acid Topical Treatment in Distal Ulcerative Colitis. Aliment. Pharmacol. Ther. 9, 309–313. 10.1111/j.1365-2036.1995.tb00386.x PubMed DOI
Vieira E. L., Leonel A. J., Sad A. P., Beltrão N. R., Costa T. F., Ferreira T. M., et al. (2012). Oral Administration of Sodium Butyrate Attenuates Inflammation and Mucosal Lesion in Experimental Acute Ulcerative Colitis. J. Nutr. Biochem. 23, 430–436. 10.1016/j.jnutbio.2011.01.007 PubMed DOI
Waxman D. J., O'Connor C. (2006). Growth Hormone Regulation of Sex-dependent Liver Gene Expression. Mol. Endocrinol. 20, 2613–2629. 10.1210/me.2006-0007 PubMed DOI
Yan H., Ajuwon K. M. (2017). Butyrate Modifies Intestinal Barrier Function in IPEC-J2 Cells through a Selective Upregulation of Tight Junction Proteins and Activation of the Akt Signaling Pathway. PloS one 12, e0179586. 10.1371/journal.pone.0179586 PubMed DOI PMC
Zanger U. M., Schwab M. (2013). Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 138, 103–141. 10.1016/j.pharmthera.2012.12.007 PubMed DOI
Zemanová N., Anzenbacher P., Zapletalová I., Jourová L., Hermanová P., Hudcovic T., et al. (2020). The Role of the Microbiome and Psychosocial Stress in the Expression and Activity of Drug Metabolizing Enzymes in Mice. Sci. Rep. 10, 8529. 10.1038/s41598-020-65595-9 PubMed DOI PMC
Zemanová N., Lněničková K., Vavrečková M., Anzenbacherová E., Anzenbacher P., Zapletalová I., et al. (2021). Gut Microbiome Affects the Metabolism of Metronidazole in Mice through Regulation of Hepatic Cytochromes P450 Expression. PloS one 16, e0259643. 10.1371/journal.pone.0259643 PubMed DOI PMC
Zhou D., Pan Q., Xin F. Z., Zhang R. N., He C. X., Chen G. Y., et al. (2017). Sodium Butyrate Attenuates High-Fat Diet-Induced Steatohepatitis in Mice by Improving Gut Microbiota and Gastrointestinal Barrier. World J. Gastroenterol. 23, 60–75. 10.3748/wjg.v23.i1.60 PubMed DOI PMC