Gut microbiome affects the metabolism of metronidazole in mice through regulation of hepatic cytochromes P450 expression

. 2021 ; 16 (11) : e0259643. [epub] 20211109

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34752478

Microbiome is now considered as a significant metabolic organ with an immense potential to influence overall human health. A number of diseases that are associated with pharmacotherapy interventions was linked with altered gut microbiota. Moreover, it has been reported earlier that gut microbiome modulates the fate of more than 30 commonly used drugs and, vice versa, drugs have been shown to affect the composition of the gut microbiome. The molecular mechanisms of this mutual relationship, however, remain mostly elusive. Recent studies indicate an indirect effect of the gut microbiome through its metabolites on the expression of biotransformation enzymes in the liver. The aim of this study was to analyse the effect of gut microbiome on the fate of metronidazole in the mice through modulation of system of drug metabolizing enzymes, namely by alteration of the expression and activity of selected cytochromes P450 (CYPs). To assess the influence of gut microbiome, germ-free mice (GF) in comparison to control specific-pathogen-free (SPF) mice were used. First, it has been found that the absence of microbiota significantly affected plasma concentration of metronidazole, resulting in higher levels (by 30%) of the parent drug in murine plasma of GF mice. Further, the significant interaction between presence/absence of the gut microbiome and effect of metronidazole application, which together influence mRNA expression of CAR, PPARα, Cyp2b10 and Cyp2c38 was determined. Administration of metronidazole itself influenced significantly mRNA expression of Cyp1a2, Cyp2b10, Cyp2c38 and Cyp2d22. Finally, GF mice have shown lower level of enzyme activity of CYP2A and CYP3A than their SPF counterparts. The results hence have shown that, beside direct bacterial metabolism, different expression and enzyme activity of hepatic CYPs in the presence/absence of gut microbiota may be responsible for the altered metronidazole metabolism.

Zobrazit více v PubMed

Guengerich FP. Human Cytochrome P450 Enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: Structure, Mechanism, and Biochemistry. Cham: Springer International Publishing; 2015. p. 523–785.

Anzenbacher P, Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci. 2001;58(5–6):737–47. doi: 10.1007/pl00000897 PubMed DOI PMC

Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. doi: 10.1016/j.pharmthera.2012.12.007 PubMed DOI

Jourova L, Anzenbacher P, Anzenbacherova E. Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(3):317–26. doi: 10.5507/bp.2016.039 PubMed DOI

Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570(7762):462–7. doi: 10.1038/s41586-019-1291-3 PubMed DOI PMC

Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–22. doi: 10.1016/j.trsl.2016.08.002 PubMed DOI PMC

Jourova L, Anzenbacher P, Matuskova Z, Vecera R, Strojil J, Kolar M, et al.. Gut microbiota metabolizes nabumetone in vitro: Consequences for its bioavailability in vivo in the rodents with altered gut microbiome. Xenobiotica. 2019;49(11):1296–302. doi: 10.1080/00498254.2018.1558310 PubMed DOI

Bendesky A, Menendez D, Ostrosky-Wegman P. Is metronidazole carcinogenic? Mutat Res. 2002;511(2):133–44. doi: 10.1016/s1383-5742(02)00007-8 PubMed DOI

Lofmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis. 2010;50 Suppl 1:S16–23. doi: 10.1086/647939 PubMed DOI

Lamp KC, Freeman CD, Klutman NE, Lacy MK. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet. 1999;36(5):353–73. doi: 10.2165/00003088-199936050-00004 PubMed DOI

Koch RL, Goldman P. The anaerobic metabolism of metronidazole forms N-(2-hydroxyethyl)-oxamic acid. J Pharmacol Exp Ther. 1979;208(3):406–10. PubMed

Leitsch D. A review on metronidazole: an old warhorse in antimicrobial chemotherapy. Parasitology. 2019;146(9):1167–78. doi: 10.1017/S0031182017002025 PubMed DOI

Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013;41(9):1686–94. doi: 10.1124/dmd.113.052548 PubMed DOI PMC

Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J Antimicrob Chemother. 2018;73(2):265–79. doi: 10.1093/jac/dkx351 PubMed DOI

Pelissier MA, Vasquez N, Balamurugan R, Pereira E, Dossou-Yovo F, Suau A, et al.. Metronidazole effects on microbiota and mucus layer thickness in the rat gut. FEMS Microbiol Ecol. 2010;73(3):601–10. doi: 10.1111/j.1574-6941.2010.00916.x PubMed DOI

Zemanova N, Anzenbacher P, Hudcovic T, Anzenbacherova E. Rapid Determination of Metronidazole and 2-Hydroxymetronidazole in Murine Blood Plasma. J Chromatogr Sci. 2021. doi: 10.1093/chromsci/bmab049 PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 PubMed DOI

Lake BG. Preparation and characterization of microsomal fractions for studies on xenobiotic metabolism. Biochemical Toxicology, A Practical Approach. Oxford: IRL Press; 1987.

Phillips I, Shephard E. Cytochrome P450 Protocols. Humana Press. 2006;320:364. doi: 10.1385/1592599982 DOI

Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76(9):4350–4. doi: 10.1073/pnas.76.9.4350 PubMed DOI PMC

Wu KC, Cui JY, Klaassen CD. Effect of Graded Nrf2 Activation on Phase-I and -II Drug Metabolizing Enzymes and Transporters in Mouse Liver. PLoS One. 2012;7(7). ARTN e39006 doi: 10.1371/journal.pone.0039006 PubMed DOI PMC

Hammer H, Schmidt F, Marx-Stoelting P, Potz O, Braeuning A. Cross-species analysis of hepatic cytochrome P450 and transport protein expression. Arch Toxicol. 2021;95(1):117–33. doi: 10.1007/s00204-020-02939-4 PubMed DOI PMC

Symonds DA, Miller KP, Tomic D, Flaws JA. Effect of methoxychlor and estradiol on cytochrome p450 enzymes in the mouse ovarian surface epithelium. Toxicol Sci. 2006;89(2):510–4. doi: 10.1093/toxsci/kfj044 PubMed DOI

Scheline RR. Drug metabolism by intestinal microorganisms. J Pharm Sci. 1968;57(12):2021–37. doi: 10.1002/jps.2600571202 PubMed DOI

Matuskova Z, Anzenbacherova E, Vecera R, Tlaskalova-Hogenova H, Kolar M, Anzenbacher P. Administration of a probiotic can change drug pharmacokinetics: effect of E. coli Nissle 1917 on amidarone absorption in rats. PLoS One. 2014;9(2):e87150. doi: 10.1371/journal.pone.0087150 PubMed DOI PMC

Yoo DH, Kim IS, Van Le TK, Jung IH, Yoo HH, Kim DH. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos. 2014;42(9):1508–13. doi: 10.1124/dmd.114.058354 PubMed DOI

Kim DH. Gut Microbiota-Mediated Drug-Antibiotic Interactions. Drug Metab Dispos. 2015;43(10):1581–9. doi: 10.1124/dmd.115.063867 PubMed DOI

Selwyn FP, Cui JY, Klaassen CD. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice. Drug Metab Dispos. 2015;43(10):1572–80. doi: 10.1124/dmd.115.063545 PubMed DOI PMC

Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. Drug Metab Dispos. 2016;44(2):262–74. doi: 10.1124/dmd.115.067504 PubMed DOI PMC

Jourova L, Anzenbacher P, Liskova B, Matuskova Z, Hermanova P, Hudcovic T, et al.. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiol (Praha). 2017;62(6):463–9. doi: 10.1007/s12223-017-0517-8 PubMed DOI

Jourova L, Vavreckova M, Zemanova N, Anzenbacher P, Langova K, Hermanova P, et al.. Gut Microbiome Alters the Activity of Liver Cytochromes P450 in Mice With Sex-Dependent Differences. Front Pharmacol. 2020;11:01303. doi: 10.3389/fphar.2020.01303 PubMed DOI PMC

Zemanova N, Anzenbacher P, Zapletalova I, Jourova L, Hermanova P, Hudcovic T, et al.. The role of the microbiome and psychosocial stress in the expression and activity of drug metabolizing enzymes in mice. Sci Rep. 2020;10(1):8529. doi: 10.1038/s41598-020-65595-9 PubMed DOI PMC

Jourova L, Liskova B, Lnenickova K, Zemanova N, Anzenbacher P, Hermanova P, et al.. Presence or absence of microbiome modulates the response of mice organism to administered drug nabumetone. Physiol Res. 2020;69(Suppl 4):S583–S94. doi: 10.33549/physiolres.934607 PubMed DOI PMC

Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332–8. doi: 10.1097/MOG.0000000000000057 PubMed DOI PMC

Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One. 2009;4(9):e6958. doi: 10.1371/journal.pone.0006958 PubMed DOI PMC

von Bergmann K, Streicher U, Leiss O, Jensen C, Gugler R. Serum-cholesterol-lowering effect of metronidazole and possible mechanisms of action. Klin Wochenschr. 1985;63(6):279–81. doi: 10.1007/BF01731475 PubMed DOI

Zhang Y, Limaye PB, Renaud HJ, Klaassen CD. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol Appl Pharmacol. 2014;277(2):138–45. doi: 10.1016/j.taap.2014.03.009 PubMed DOI PMC

Wang HB, Tompkins LM. CYP2B6: New insights into a historically overlooked cytochrome P450 isozyme. Current Drug Metabolism. 2008;9(7):598–610. doi: 10.2174/138920008785821710 PubMed DOI PMC

Stancil S, Vyhlidal C, Kearns G, Leeder S, Pearce RE. Induction of CYP2A6 by Metronidazole in Primary Human Hepatocytes. Faseb Journal. 2016;30.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace