Presence or absence of microbiome modulates the response of mice organism to administered drug nabumetone
Jazyk angličtina Země Česko Médium print
Typ dokumentu srovnávací studie, časopisecké články
PubMed
33646003
PubMed Central
PMC8603698
DOI
10.33549/physiolres.934607
PII: 934607
Knihovny.cz E-zdroje
- MeSH
- antiflogistika nesteroidní aplikace a dávkování metabolismus MeSH
- aplikace orální MeSH
- Bacteria metabolismus MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- dysbióza MeSH
- játra účinky léků enzymologie MeSH
- metabolická aktivace MeSH
- myši inbrední BALB C MeSH
- nabumeton aplikace a dávkování metabolismus MeSH
- střevní mikroflóra * MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- tenké střevo účinky léků enzymologie mikrobiologie MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- cytochrom P-450 CYP1A1 MeSH
- nabumeton MeSH
- systém (enzymů) cytochromů P-450 MeSH
- transkripční faktory MeSH
The gut microbiota provides a wide range of beneficial functions for the host, and has an immense effect on the host's health status. The presence of microbiome in the gut may often influence the effect of an orally administered drug. Molecular mechanisms of this process are however mostly unclear. We investigated how the effect of a nonsteroidal drug nabumetone on expression of drug metabolizing enzymes (DMEs) in mice intestine and liver is changed by the presence of microbiota, here, using the germ free (GF) and specific pathogen free (SPF) BALB/c mice. First, we have found in a preliminary experiment that in the GF mice there is a tendency to increase bioavailability of the active form of nabumetone, which we have found now to be possibly influenced by differences in expression of DMEs in the GF and SPF mice. Indeed, we have observed that the expression of the most of selected cytochromes P450 (CYPs) was significantly changed in the small intestine of GF mice compared to the SPF ones. Moreover, orally administered nabumetone itself altered the expression of some CYPs and above all, in different ways in the GF and SPF mice. In the GF mice, the expression of the DMEs (CYP1A) responsible for the formation of active form of the drug are significantly increased in the small intestine and liver after nabumetone application. These results highlight the importance of gut microbiome in processes involved in drug metabolism in the both gastrointestinal tract and in the liver with possible clinical relevance.
Zobrazit více v PubMed
AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003. PubMed DOI
ANZENBACHER P, ANZENBACHEROVA E. Cytochromes P450 and metabolism of xenobiotics. CMLS. 2001;58:737–747. doi: 10.1007/PL00000897. PubMed DOI PMC
BETTS S, BJORKHEM-BERGMAN L, RANE A, EKSTROM L. Expression of CYP3A4 and CYP3A7 in human foetal tissues and its correlation with nuclear receptors. Basic Clin Pharmacol Toxicol. 2015;117:261–266. doi: 10.1111/bcpt.12392. PubMed DOI
CHANG TK, WAXMAN DJ. Catalytic assays for human cytochrome P450: an introduction. Methods Mol Biol. 2006;320:73–83. doi: 10.1385/1-59259-998-2:73. PubMed DOI
CLAUS SP, ELLERO SL, BERGER B, KRAUSE L, BRUTTIN A, MOLINA J, PARIS A, WANT EJ, de WAZIERS I, CLOAREC O, RICHARDS SE, WANG Y, DUMAS ME, ROSS A, REZZI S, KOCHHAR S, van BLADEREN P, LINDON JC, HOLMES E, NICHOLSON JK. Colonization-induced host-gut microbial metabolic interaction. mBio. 2011;2:e00271–00210. doi: 10.1128/mBio.00271-10. PubMed DOI PMC
COX LM, WEINER HL. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics. 2018;15:135–145. doi: 10.1007/s13311-017-0598-8. PubMed DOI PMC
FORSLUND K, HILDEBRAND F, NIELSEN T, FALONY G, LE CHATELIER E, SUNAGAWA S, PRIFTI E, VIEIRA-SILVA S, GUDMUNDSDOTTIR V, PEDERSEN HK, ARUMUGAM M, KRISTIANSEN K, VOIGT AY, VESTERGAARD H, HERCOG R, COSTEA PI, KULTIMA JR, LI J, JORGENSEN T, LEVENEZ F, DORE J, NIELSEN HB, BRUNAK S, RAES J, HANSEN T, WANG J, EHRLICH SD, BORK P, PEDERSEN O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–266. doi: 10.1038/nature15766. PubMed DOI PMC
GAO J, XU K, LIU H, LIU G, BAI M, PENG C, LI T, YIN Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013. PubMed DOI PMC
GILL P, BHATTACHARYYA S, McCULLOUGH S, LETZIG L, MISHRA PJ, LUO C, DWEEP H, JAMES L. MicroRNA regulation of CYP 1A2, CYP3A4 and CYP2E1 expression in acetaminophen toxicity. Sci Rep. 2017;7:12331. doi: 10.1038/s41598-017-11811-y. PubMed DOI PMC
GILLETTE J. Techniques for studying drug metabolism in vitro. In: LA DU BN, MANDEL G, WAY EL, editors. Fundamentals of drug metabolism and drug disposition. Baltimore: Williams and Wilkins; 1971. pp. 400–418.
GOETHEL A, CROITORU K, PHILPOTT DJ. The interplay between microbes and the immune response in inflammatory bowel disease. J Physiol. 2018;596:869–3882. doi: 10.1113/JP275396. PubMed DOI PMC
JERNBERG C, LOFMARK S, EDLUND C, JANSSON JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156:216–3223. doi: 10.1099/mic.0.040618-0. PubMed DOI
JI J, QU H. Cross-regulatory circuit between AHR and microbiota. Curr Drug Metab. 2019;20:4–8. doi: 10.2174/1389200219666180129151150. PubMed DOI
JOUROVA L, ANZENBACHER P, ANZENBACHEROVA E. Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Rep. 2016;160:17–326. doi: 10.5507/bp.2016.039. PubMed DOI
JOUROVA L, ANZENBACHER P, LISKOVA B, MATUSKOVA Z, HERMANOVA P, HUDCOVIC T, KOZAKOVA H, HRNCIROVA L, ANZENBACHEROVA E. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiol. 2017;62:463–469. doi: 10.1007/s12223-017-0517-8. PubMed DOI
JOUROVA L, ANZENBACHER P, MATUSKOVA Z, VECERA R, STROJIL J, KOLAR M, NOBILIS M, HERMANOVA P, HUDCOVIC T, KOZAKOVA H, KVERKA M, ANZENBACHEROVA E. Gut microbiota metabolizes nabumetone in vitro: Consequences for its bioavailability in vivo in the rodents with altered gut microbiome. Xenobiotica. 2019;49:1296–1302. doi: 10.1080/00498254.2018.1558310. PubMed DOI
KAMINSKY LS, ZHANG Q-Y. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos. 2003;31:1520–1525. doi: 10.1124/dmd.31.12.1520. PubMed DOI
KOETH RA, WANG Z, LEVISON BS, BUFFA JA, ORG E, SHEEHY BT, BRITT EB, FU X, WU Y, LI L, SMITH JD, DIDONATO JA, CHEN J, LI H, WU GD, LEWIS JD, WARRIER M, BROWN JM, KRAUSS RM, TANG WH, BUSHMAN FD, LUSIS AJ, HAZEN SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–585. doi: 10.1038/nm.3145. PubMed DOI PMC
KONOPELSKI P, UFNAL M. Indoles - gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr Drug Metab. 2018;19(10):883–890. doi: 10.2174/1389200219666180427164731. PubMed DOI
KOOPEN AM, GROEN AK, NIEUWDORP M. Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Curr Opin Lipidol. 2016;27:615–622. doi: 10.1097/MOL.0000000000000357. PubMed DOI
KORECKA A, DONA A, LAHIRI S, TETT AJ, AL-ASMAKH M, BRANISTE V, D’ARIENZO R, ABBASPOUR A, REICHARDT N, FUJII-KURIYAMA Y, RAFTER J, NARBAD A, HOLMES E, NICHOLSON J, ARULAMPALAM V, PETTERSSON S. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes. 2016;2:16014. doi: 10.1038/npjbiofilms.2016.14. PubMed DOI PMC
LARIGOT L, JURICEK L, DAIROU J, COUMOUL X. AhR signaling pathways and regulatory functions. Biochim Open. 2018;7:1–9. doi: 10.1016/j.biopen.2018.05.001. PubMed DOI PMC
LI H, HE J, JIA W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12:1–40. doi: 10.1517/17425255.2016.1121234. PubMed DOI PMC
LIN JH. CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm Res. 2006;23:1089–1116. doi: 10.1007/s11095-006-0277-7. PubMed DOI
LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
LNĚNIČKOVÁ K, SKÁLOVÁ L, STUCHLÍKOVÁ L, SZOTÁKOVÁ B, MATOUŠKOVÁ P. Induction of xenobiotic-metabolizing enzymes in hepatocytes by beta-naphthoflavone: Time-dependent changes in activities, protein and mRNA levels. Acta Pharm. 2018;68:75–85. doi: 10.2478/acph-2018-0005. PubMed DOI
MATUSKOVA Z, ANZENBACHEROVA E, VECERA R, TLASKALOVA-HOGENOVA H, KOLAR M, ANZENBACHER P. Administration of a probiotic can change drug pharmacokinetics: effect of E. coli Nissle 1917 on amidarone absorption in rats. PLoS ONE. 2014;9:e87150. doi: 10.1371/journal.pone.0087150. PubMed DOI PMC
NATIVIDAD JM, AGUS A, PLANCHAIS J, LAMAS B, JARRY AC, MARTIN R, MICHEL ML, CHONG-NGUYEN C, ROUSSEL R, STRAUBE M, JEGOU S, McQUITTY C, le GALL M, da COSTA G, LECORNET E, MICHAUDEL C, MODOUX M, GLODT J, BRIDONNEAU C, SOVRAN B, DUPRAZ L, BADO A, RICHARD ML, LANGELLA P, HANSEL B, LAUNAY JM, XAVIER RJ, DUBOC H, SOKOL H. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 2018;28:737–749.e4. doi: 10.1016/j.cmet.2018.07.001. PubMed DOI
NOBILIS M, MIKUSEK J, SZOTAKOVA B, JIRASKO R, HOLCAPEK M, CHAMSEDDIN C, JIRA T, KUCERA R, KUNES J, POUR M. Analytical power of LLE-HPLC-PDA-MS/MS in drug metabolism studies: identification of new nabumetone metabolites. J Pharm Biomed. 2013;80:164–172. doi: 10.1016/j.jpba.2013.03.006. PubMed DOI
PHILLIPS IR, SHEPHARD EA. Cytochrome P450 Protocols. Vol. 320. Humana Press; Totowa, NJ: 2006. p. 364.
SAAD R, RIZKALLAH MR, AZIZ RK. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog. 2012;4:16. doi: 10.1186/1757-4749-4-16. PubMed DOI PMC
SELWYN FP, CUI JY, KLAASSEN CD. RNA-Seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos. 2015;43:1572–1580. doi: 10.1124/dmd.115.063545. PubMed DOI PMC
SELWYN FP, CHENG SL, KLAASSEN CD, CUI JY. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos. 2016;44:262–274. doi: 10.1124/dmd.115.067504. PubMed DOI PMC
SOUSA T, PATERSON R, MOORE V, CARLSSON A, ABRAHAMSSON B, BASIT AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008;363:1–25. doi: 10.1016/j.ijpharm.2008.07.009. PubMed DOI
TURPEINEN M, HOFMANN U, KLEIN K, MURDTER T, SCHWAB M, ZANGER UM. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes. Drug Metab Dispos. 2009;37:1017–1024. doi: 10.1124/dmd.108.025700. PubMed DOI
VARFAJ F, ZULKIFLI SN, PARK HG, CHALLINOR VL, De VOSS JJ, ORTIZ De MONTELLANO PR. Carbon-carbon bond cleavage in activation of the prodrug nabumetone. Drug Metab Dispos. 2014;42:828–838. doi: 10.1124/dmd.114.056903. PubMed DOI PMC
WILKINSON EM, ILHAN ZE, HERBST-KRALOVETZ MM. Microbiota-drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas. 2018;112:53–63. doi: 10.1016/j.maturitas.2018.03.012. PubMed DOI
WILSON ID, NICHOLSON JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–222. doi: 10.1016/j.trsl.2016.08.002. PubMed DOI PMC
XIE F, DING X, ZHANG QY. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin B. 2016;6:74–383. doi: 10.1016/j.apsb.2016.07.012. PubMed DOI PMC
YOO DH, KIM IS, van LE TK, JUNG IH, YOO HH, KIM DH. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos. 2014;42:1508–1513. doi: 10.1124/dmd.114.058354. PubMed DOI
ZANGER UM, SCHWAB M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Therapeut. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
ZHANG L, NICHOLS RG, CORRELL J, MURRAY IA, TANAKA N, SMITH PB, HUBBARD TD, SEBASTIAN A, ALBERT I, HATZAKIS E, GONZALEZ FJ, PERDEW GH, PATTERSON AD. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect. 2015;123:679–688. doi: 10.1289/ehp.1409055. PubMed DOI PMC
ZHU Y, DING X, FANG C, ZHANG QY. Regulation of intestinal cytochrome P450 expression by hepatic cytochrome P450: possible involvement of fibroblast growth factor 15 and impact on systemic drug exposure. Mol Pharmacol. 2014;85:139–147. doi: 10.1124/mol.113.088914. PubMed DOI PMC
Butyrate Treatment of DSS-Induced Ulcerative Colitis Affects the Hepatic Drug Metabolism in Mice