Gut Microbiome Alters the Activity of Liver Cytochromes P450 in Mice With Sex-Dependent Differences

. 2020 ; 11 () : 01303. [epub] 20201002

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33123003

Sexual differences and the composition/function of the gut microbiome are not considered the most important players in the drug metabolism field; however, from the recent data it is obvious that they may significantly affect the response of the patient to therapy. Here, we evaluated the effect of microbial colonization and sex differences on mRNA expression and the enzymatic activity of hepatic cytochromes P450 (CYPs) in germ-free (GF) mice, lacking the intestinal flora, and control specific-pathogen-free (SPF) mice. We observed a significant increase in the expression of Cyp3a11 in female SPF mice compared to the male group. However, the sex differences were erased in GF mice, and the expression of Cyp3a11 was about the same in both sexes. We have also found higher Cyp2c38 gene expression in female mice compared to male mice in both the SPF and GF groups. Moreover, these changes were confirmed at the level of enzymatic activity, where the female mice exhibit higher levels of functional CYP2C than males in both groups. Interestingly, we observed the same trend as with CYP3A enzymes: a diminished difference between the sexes in GF mice. The presented data indicate that the mouse gut microbiome plays an important role in sustaining sexual dimorphism in terms of hepatic gene expression and metabolism.

Zobrazit více v PubMed

Anzenbacher P., Anzenbacherová E. (2001). Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. CMLS. 58, 737–747.  10.1007/pl00000897 PubMed DOI PMC

Bolnick D., II, Snowberg L. K., Hirsch P. E., Lauber C. L., Org E., Parks B., et al. (2014). Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Communications 5, 4500.  10.1038/ncomms5500 PubMed DOI PMC

Claus S. P., Ellero S. L., Berger B., Krause L., Bruttin A., Molina J., et al. (2011). Colonization-induced host-gut microbial metabolic interaction. mBio 2, e00271–e00210.  10.1128/mBio.00271-10 PubMed DOI PMC

Corton J. C., Bushel P. R., Fostel J., O’Lone R. B. (2012). Sources of variance in baseline gene expression in the rodent liver. Mutat. Res. 746, 104–112.  10.1016/j.mrgentox.2011.12.017 PubMed DOI PMC

Hakkola J., Bernasconi C., Coecke S., Richert L., Andersson T. B., Pelkonen O. (2018). Cytochrome P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor alpha at the Crossroads of Toxicokinetics and Toxicodynamics. Basic Clin. Pharmacol. Toxicol. 123 Suppl 5, 42–50.  10.1111/bcpt.13004 PubMed DOI

Haro C., Rangel-Zúñiga O. A., Alcalá-Díaz J. F., Gómez-Delgado F., Pérez-Martínez P., Delgado-Lista J., et al. (2016). Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PloS One 11, e0154090.  10.1371/journal.pone.0154090 PubMed DOI PMC

Hernandez J. P., Mota L. C., Huang W., Moore D. D., Baldwin W. S. (2009). Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 256, 53–64.  10.1016/j.tox.2008.11.002 PubMed DOI PMC

Huang B., Butler R., Miao Y., Dai Y., Wu W., Su W., et al. (2016). Dysregulation of Notch and ERα signaling in AhR–/– male mice. Proc. Natl. Acad. Sci. 113, 11883–11888.  10.1073/pnas.1613269113 PubMed DOI PMC

Jourova L., Anzenbacher P., Anzenbacherova E. (2016). Human gut microbiota plays a role in the metabolism of drugs. BioMed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 160, 317–326.  10.5507/bp.2016.039 PubMed DOI

Jourova L., Anzenbacher P., Liskova B., Matuskova Z., Hermanova P., Hudcovic T., et al. (2017). Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice. Folia Microbiol. (Praha) 62, 463–469.  10.1007/s12223-017-0517-8 PubMed DOI

Jourova L., Anzenbacher P., Matuskova Z., Vecera R., Strojil J., Kolar M., et al. (2019). Gut microbiota metabolizes nabumetone in vitro: Consequences for its bioavailability in vivo in the rodents with altered gut microbiome. Xenobiotica; fate foreign compounds Biol. Syst. 49, 1296–1302.  10.1080/00498254.2018.1558310 PubMed DOI

Kinross J. M., Darzi A. W., Nicholson J. K. (2011). Gut microbiome-host interactions in health and disease. Genome Med. 3, 14.  10.1186/gm228 PubMed DOI PMC

Kronbach T., Mathys D., Umeno M., Gonzalez F. J., Meyer U. A. (1989). Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol. Pharmacol. 36, 89–96. PubMed

Lake B. G. (1987). Biochemical Toxicology. A Practical Approach. IRL Press. Chapter, 183–215.

Lamba V., Panetta J. C., Strom S., Schuetz E. G. (2010). Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J. Pharmacol. Exp. Ther. 332, 1088–1099.  10.1124/jpet.109.160804 PubMed DOI PMC

Lee W. J., Hase K. (2014). Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424.  10.1038/nchembio.1535 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego Calif.) 25, 402–408.  10.1006/meth.2001.1262 PubMed DOI

Lu Y. F., Jin T., Xu Y., Zhang D., Wu Q., Zhang Y. K., et al. (2013). Sex differences in the circadian variation of cytochrome p450 genes and corresponding nuclear receptors in mouse liver. Chronobiol. Int. 30, 1135–1143.  10.3109/07420528.2013.805762 PubMed DOI PMC

Markle J. G., Frank D. N., Mortin-Toth S., Robertson C. E., Feazel L. M., Rolle-Kampczyk U., et al. (2013). Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Sci. (New York NY) 339, 1084–1088.  10.1126/science.1233521 PubMed DOI

Matuskova Z., Tunkova A., Anzenbacherova E., Vecera R., Siller M., Tlaskalova-Hogenova H., et al. (2010). Effects of probiotic Escherichia coli Nissle 1917 on expression of cytochromes P450 along the gastrointestinal tract of male rats. Neuro Endocrinol. Lett. 31 Suppl 2, 46–50. PubMed

Nebert D. W., Russell D. W. (2002). Clinical importance of the cytochromes P450. Lancet (London Engl.) 360, 1155–1162.  10.1016/s0140-6736(02)11203-7 PubMed DOI

Niwa T., Murayama N., Imagawa Y., Yamazaki H. (2015). Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab. Rev. 47, 89–110.  10.3109/03602532.2015.1011658 PubMed DOI

Org E., Mehrabian M., Parks B. W., Shipkova P., Liu X., Drake T. A., et al. (2016). Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322.  10.1080/19490976.2016.1203502 PubMed DOI PMC

Phillips I. R., Shephard E. A. (2006). Cytochrome P450 Protocols (Totowa, NJ: Humana Press; ).

Renaud H. J., Cui J. Y., Khan M., Klaassen C. D. (2011). Tissue distribution and gender-divergent expression of 78 cytochrome P450 mRNAs in mice. Toxicol. Sci. an Off. J. Soc. Toxicol. 124, 261–277.  10.1093/toxsci/kfr240 PubMed DOI PMC

Schlomann B. H., Parthasarathy R. (2019). Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63.  10.1016/j.mib.2019.09.011 PubMed DOI PMC

Selwyn F. P., Cui J. Y., Klaassen C. D. (2015). RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice. Drug Metab. Dispos. 43, 1572–1580.  10.1124/dmd.115.063545 PubMed DOI PMC

Selwyn F. P., Cheng S. L., Klaassen C. D., Cui J. Y. (2016). Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. Drug Metab. Dispos. 44, 262–274.  10.1124/dmd.115.067504 PubMed DOI PMC

Smith P. K., Krohn R., II, Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., et al. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.  10.1016/0003-2697(85)90442-7 PubMed DOI

Sousa T., Paterson R., Moore V., Carlsson A., Abrahamsson B., Basit A. W. (2008). The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm. 363, 1–25.  10.1016/j.ijpharm.2008.07.009 PubMed DOI

Tlaskalová-Hogenová H., Sterzl J., Stĕpánkova R., Dlabac V., Vĕ V., Rossmann P., et al. (1983). Development of immunological capacity under germfree and conventional conditions. Ann. New York Acad. Sci. 409, 96–113.  10.1111/j.1749-6632.1983.tb26862.x PubMed DOI

Waxman D. J., Holloway M. G. (2009). Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol. 76, 215–228.  10.1124/mol.109.056705 PubMed DOI PMC

Waxman D. J., O’Connor C. (2006). Growth hormone regulation of sex-dependent liver gene expression. Mol. Endocrinol. (Baltimore Md). 20, 2613–2629.  10.1210/me.2006-0007 PubMed DOI

Weger B. D., Gobet C., Yeung J., Martin E., Jimenez S., Betrisey B., et al. (2019). The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metab. 29, 362–382 e368.  10.1016/j.cmet.2018.09.023 PubMed DOI PMC

Wilson I. D., Nicholson J. K. (2017). Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Trans. Res. J. Lab. Clin. Med. 179, 204–222.  10.1016/j.trsl.2016.08.002 PubMed DOI PMC

Wilson A. S., Koller K. R., Ramaboli M. C., Nesengani L. T., Ocvirk S., Chen C., et al. (2020). Diet and the Human Gut Microbiome: An International Review. Digest. Dis. Sci. 65, 723–740.  10.1007/s10620-020-06112-w PubMed DOI PMC

Yang L., Li Y., Hong H., Chang C. W., Guo L. W., Lyn-Cook B., et al. (2012). Sex Differences in the Expression of Drug-Metabolizing and Transporter Genes in Human Liver. J. Drug Metab. Toxicol. 3:1000119.  10.4172/2157-7609.1000119 PubMed DOI PMC

Yoo D. H., Kim I. S., Van Le T. K., Jung I. H., Yoo H. H., Kim D. H. (2014). Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos. 42, 1508–1513.  10.1124/dmd.114.058354 PubMed DOI

Zanger U. M., Schwab M. (2013). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138, 103–141.  10.1016/j.pharmthera.2012.12.007 PubMed DOI

Zhang B., Cheng Q., Ou Z., Lee J. H., Xu M., Kochhar U., et al. (2010). Pregnane X Receptor as a Therapeutic Target to Inhibit Androgen Activity. Endocrinology 151, 5721–5729.  10.1210/en.2010-0708 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...