Priority order of neonatal colonization by a probiotic or pathogenic Escherichia coli strain dictates the host response to experimental colitis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39206364
PubMed Central
PMC11349737
DOI
10.3389/fmicb.2024.1393732
Knihovny.cz E-resources
- Keywords
- DSS-experimental colitis, Escherichia coli, immune modulation, mouse model, priority effect,
- Publication type
- Journal Article MeSH
The alarming prevalence of inflammatory bowel disease (IBD) in early childhood is associated with imbalances in the microbiome, the immune response, and environmental factors. Some pathogenic Escherichia coli (E. coli) strains have been found in IBD patients, where they may influence disease progression. Therefore, the discovery of new harmful bacterial strains that have the potential to drive the inflammatory response is of great importance. In this study, we compared the immunomodulatory properties of two E. coli strains of serotype O6: the probiotic E. coli Nissle 1917 and the uropathogenic E. coli O6:K13:H1. Using the epithelial Caco-2 cell line, we investigated the different abilities of the strains to adhere to and invade epithelial cells. We confirmed the potential of E. coli Nissle 1917 to modulate the Th1 immune response in a specific manner in an in vitro setting by stimulating mouse bone marrow-derived dendritic cells (BM-DCs). In gnotobiotic in vivo experiments, we demonstrated that neonatal colonization with E. coli Nissle 1917 achieves a stable high concentration in the intestine and protects mice from the progressive effect of E. coli O6:K13:H1 in developing ulcerative colitis in an experimental model. In contrast, a single-dose treatment with E. coli Nissle 1917 is ineffective in achieving such high concentrations and does not protect against DSS-induced ulcerative colitis in mice neonatally colonized with pathobiont E. coli O6:K13:H1. Despite the stable coexistence of both E. coli strains in the intestinal environment of the mice, we demonstrated a beneficial competitive interaction between the early colonizing E. coli Nissle 1917 and the late-arriving strain O6:K13:H1, suggesting its anti-inflammatory potential for the host. This study highlights the importance of the sequence of bacterial colonization, which influences the development of the immune response in the host gut and potentially impacts future quality of life.
See more in PubMed
Al Nabhani Z., Dietrich G., Hugot J. P., Barreau F. (2017). Nod2: The intestinal gate keeper. PLoS Pathog. 13:e1006177. 10.1371/journal.ppat.1006177 PubMed DOI PMC
Altenhoefer A., Oswald S., Sonnenborn U., Enders C., Schulze J., Hacker J., et al. . (2004). The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol. Med. Microbiol. 40, 223–229. 10.1016/S0928-8244(03)00368-7 PubMed DOI
Barnich N., Darfeuille-Michaud A. (2007). Adherent-invasive Escherichia coli and Crohn's disease. Curr. Opin. Gastroenterol. 23, 16–20. 10.1097/MOG.0b013e3280105a38 PubMed DOI
Benada O., Pokorny V. (1990). Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films. J. Electron Microsc. Tech. 16, 235–239. 10.1002/jemt.1060160304 PubMed DOI
Blum-Oehler G., Oswald S., Eiteljörge K., Sonnenborn U., Schulze J., Kruis W., et al. . (2003). Development of strain-specific PCR reactions for the detection of the probiotic Escherichia coli strain Nissle 1917 in fecal samples. Res. Microbiol. 154, 59–66. 10.1016/S0923-2508(02)00007-4 PubMed DOI
Boudeau J., Glasser A. L., Julien S., Colombel J. F., Darfeuille-Michaud A. (2003). Inhibitory effect of probiotic Escherichia coli strain Nissle 1917 on adhesion to and invasion of intestinal epithelial cells by adherent-invasive E. coli strains isolated from patients with Crohn's disease. Aliment Pharmacol Ther. 18, 45–56. 10.1046/j.1365-2036.2003.01638.x PubMed DOI
Boudeau J., Glasser A. L., Masseret E., Joly B., Darfeuille-Michaud A. (1999). Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect. Immun. 67, 4499–4509. 10.1128/IAI.67.9.4499-4509.1999 PubMed DOI PMC
Capitani G., Eidam O., Glockshuber R., Grütter M. G. (2006). Structural and functional insights into the assembly of type 1 pili from Escherichia coli. Microbes Infect. 8, 2284–2290. 10.1016/j.micinf.2006.03.013 PubMed DOI
Cooney R., Baker J., Brain O., Danis B., Pichulik T., Allan P., et al. . (2010). NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97. 10.1038/nm.2069 PubMed DOI
Costa C., Ferreira G. D., Simões M., Silva J. L., Campos M. J. (2022). Real-time PCR protocol for detection and quantification of three pathogenic members of the vibrionaceae family. Microorganisms 10:2060. 10.3390/microorganisms10102060 PubMed DOI PMC
Damaskos D., Kolios G. (2008). Probiotics and prebiotics in inflammatory bowel disease: microflora ‘on the scope'. Br. J. Clin. Pharmacol. 65, 453–467. 10.1111/j.1365-2125.2008.03096.x PubMed DOI PMC
Faith J. J., Guruge J. L., Charbonneau M., Subramanian S., Seedorf H., Goodman A. L., et al. . (2013). The long-term stability of the human gut microbiota. Science 341:1237439. 10.1126/science.1237439 PubMed DOI PMC
Fukami T. (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23. 10.1146/annurev-ecolsys-110411-160340 DOI
Gensollen T., Iyer S. S., Kasper D. L., Blumberg R. S. (2016). How colonization by microbiota in early life shapes the immune system. Science 352, 539–544. 10.1126/science.aad9378 PubMed DOI PMC
Grabig A., Paclik D., Guzy C., Dankof A., Baumgart D. C., Erckenbrecht J., et al. . (2006). Escherichia coli strain Nissle 1917 ameliorates experimental colitis via toll-like receptor 2- and toll-like receptor 4-dependent pathways. Infect. Immun. 74, 4075–4082. 10.1128/IAI.01449-05 PubMed DOI PMC
Grozdanov L., Raasch C., Schulze J., Sonnenborn U., Gottschalk G., Hacker J., et al. . (2004). Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J. Bacteriol. 186, 5432–5441. 10.1128/JB.186.16.5432-5441.2004 PubMed DOI PMC
Güttsches A. K., Löseke S., Zähringer U., Sonnenborn U., Enders C., Gatermann S., et al. . (2012). Anti-inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells. Innate Immun. 18, 204–216. 10.1177/1753425910396251 PubMed DOI
Harris J. R., Scheffler D. (2002). Routine preparation of air-dried negatively stained and unstained specimens on holey carbon support films: a review of applications. Micron 33, 461–480. 10.1016/S0968-4328(01)00039-7 PubMed DOI
Hudcovic T., Kolinska J., Klepetar J., Stepankova R., Rezanka T., Srutkova D., et al. . (2012). Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice. Clin. Exp. Immunol. 167, 356–365. 10.1111/j.1365-2249.2011.04498.x PubMed DOI PMC
Hudcovic T., Stepankova R., Cebra J., Tlaskalova-Hogenova H. (2001). The role of microflora in the development of intestinal inflammation: acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol. 46, 565–572. 10.1007/BF02818004 PubMed DOI
Hudcovic T., Stepankova R., Kozakova H., Hrncir T., Tlaskalova-Hogenova H. (2007). Effects of monocolonization with Escherichia coli strains O6K13 and Nissle 1917 on the development of experimentally induced acute and chronic intestinal inflammation in germ-free immunocompetent and immunodeficient mice. Folia Microbiol. 52, 618–626. 10.1007/BF02932191 PubMed DOI
Janeckova L., Kostovcikova K., Svec J., Stastna M., Strnad H., Kolar M., et al. . (2019). Unique gene expression signatures in the intestinal mucosa and organoids derived from germ-free and monoassociated mice. Int. J. Mol. Sci. 20:1581. 10.3390/ijms20071581 PubMed DOI PMC
Jensen S. R., Mirsepasi-Lauridsen H. C., Thysen A. H., Brynskov J., Krogfelt K. A., Petersen A. M., et al. . (2015). Distinct inflammatory and cytopathic characteristics of Escherichia coli isolates from inflammatory bowel disease patients. Int. J. Med. Microbiol. 305, 925–936. 10.1016/j.ijmm.2015.10.002 PubMed DOI
Jost T., Lacroix C., Braegger C. P., Chassard C. (2012). New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE 7:e44595. 10.1371/journal.pone.0044595 PubMed DOI PMC
Jourova L., Satka S., Frybortova V., Zapletalova I., Anzenbacher P., Anzenbacherova E., et al. . (2022). Butyrate treatment of DSS-induced ulcerative colitis affects the hepatic drug metabolism in mice. Front. Pharmacol. 13:936013. 10.3389/fphar.2022.936013 PubMed DOI PMC
Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofronova O., Benada O., et al. . (2019). Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front Microbiol. 10:2304. 10.3389/fmicb.2019.02304 PubMed DOI PMC
Leatham M. P., Banerjee S., Autieri S. M., Mercado-Lubo R., Conway T., Cohen P. S. (2009). Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun. 77, 2876–2886. 10.1128/IAI.00059-09 PubMed DOI PMC
Lee S. M., Donaldson G. P., Mikulski Z., Boyajian S., Ley K., Mazmanian S. K. (2013). Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429. 10.1038/nature12447 PubMed DOI PMC
Lu J., Dong B., Chen A., He F., Peng B., Wu Z., et al. . (2019). Escherichia coli promotes DSS induced murine colitis recovery through activation of the TLR4/NF κB signaling pathway. Mol. Med. Rep. 19, 2021–2028. 10.3892/mmr.2019.9848 PubMed DOI PMC
Martínez I., Maldonado-Gomez M. X., Gomes-Neto J. C., Kittana H., Ding H., Schmaltz R., et al. . (2018). Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. Elife 7:e36521. 10.7554/eLife.36521.027 PubMed DOI PMC
Martinez-Medina M., Garcia-Gil L. J. (2014). Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity. World J. Gastrointest. Pathophysiol. 5, 213–227. 10.4291/wjgp.v5.i3.213 PubMed DOI PMC
Martinez-Medina M., Mora A., Blanco M., López C., Alonso M. P., Bonacorsi S., et al. . (2009). Similarity and divergence among adherent-invasive Escherichia coli and extraintestinal pathogenic E. coli strains. J. Clin. Microbiol. 47, 3968–3979. 10.1128/JCM.01484-09 PubMed DOI PMC
Matamoros S., Gras-Leguen C., Le Vacon F., Potel G., de La Cochetiere M. F. (2013). Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 21, 167–173. 10.1016/j.tim.2012.12.001 PubMed DOI
Mirsepasi-Lauridsen H. C., Du Z., Struve C., Charbon G., Karczewski J., Krogfelt K. A., et al. . (2016). Secretion of alpha-hemolysin by Escherichia coli disrupts tight junctions in ulcerative colitis patients. Clin. Transl. Gastroenterol. 7:e149. 10.1038/ctg.2016.3 PubMed DOI PMC
Mirsepasi-Lauridsen H. C., Vallance B. A., Krogfelt K. A., Petersen A. M. (2019). Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 32, e00060–e00018. 10.1128/CMR.00060-18 PubMed DOI PMC
Moustafa A., Li W., Anderson E. L., Wong E. H. M., Dulai P. S., Sandborn W. J., et al. . (2018). Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clin. Transl. Gastroenterol. 9:e132. 10.1038/ctg.2017.58 PubMed DOI PMC
Nag D., Breen P., Raychaudhuri S., Withey J. H. (2018). Glucose metabolism by Escherichia coli inhibits Vibrio cholerae intestinal colonization of zebrafish. Infect. Immun. 86, e00486–e00418. 10.1128/IAI.00486-18 PubMed DOI PMC
Negroni A., Colantoni E., Vitali R., Palone F., Pierdomenico M., Costanzo M., et al. . (2016). NOD2 induces autophagy to control AIEC bacteria infectiveness in intestinal epithelial cells. Inflamm. Res. 65, 803–813. 10.1007/s00011-016-0964-8 PubMed DOI
Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., Andoh A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 11, 1–10. 10.1007/s12328-017-0813-5 PubMed DOI
Ott S. J., Musfeldt M., Ullmann U., Hampe J., Schreiber S. (2004). Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J. Clin. Microbiol. 42, 2566–2572. 10.1128/JCM.42.6.2566-2572.2004 PubMed DOI PMC
Park J., Kim D. H., Kim S., Ma H. W., Park I. S., Son M., et al. . (2021). Anti-inflammatory properties of Escherichia coli Nissle 1917 in a murine colitis model. Intest Res. 19, 478–481. 10.5217/ir.2021.00121 PubMed DOI PMC
Park S., Kang Y., Koh H., Kim S. (2020). Increasing incidence of inflammatory bowel disease in children and adolescents: significance of environmental factors. Clin Exp Pediatr. 63, 337–344. 10.3345/cep.2019.00500 PubMed DOI PMC
Petersen A. M., Nielsen E. M., Litrup E., Brynskov J., Mirsepasi H., Krogfelt K. A. (2009). A phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel disease. BMC Microbiol. 9:171. 10.1186/1471-2180-9-171 PubMed DOI PMC
Pradhan S., Weiss A. A. (2020). Probiotic properties of Escherichia coli Nissle in human intestinal organoids. MBio 11, e01470–e01420. 10.1128/mBio.01470-20 PubMed DOI PMC
Rao C., Coyte K. Z., Bainter W., Geha R. S., Martin C. R., Rakoff-Nahoum S. (2021). Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 591, 633–638. 10.1038/s41586-021-03241-8 PubMed DOI PMC
Rodríguez-Nogales A., Algieri F., Garrido-Mesa J., Vezza T., Utrilla M. P., Chueca N., et al. . (2018). The administration of Escherichia coli Nissle 1917 ameliorates development of DSS-induced colitis in mice. Front. Pharmacol. 9:468. 10.3389/fphar.2018.00468 PubMed DOI PMC
Sartor R. B., Muehlbauer M. (2007). Microbial host interactions in IBD: implications for pathogenesis and therapy. Curr. Gastroenterol. Rep. 9, 497–507. 10.1007/s11894-007-0066-4 PubMed DOI
Schlee M., Wehkamp J., Altenhoefer A., Oelschlaeger T. A., Stange E. F., Fellermann K. (2007). Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 75, 2399–2407. 10.1128/IAI.01563-06 PubMed DOI PMC
Schultz M. (2008). Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. 14 Inflamm. Bowel Dis. 14, 1012–1018. 10.1002/ibd.20377 PubMed DOI
Schwarzer M., Srutkova D., Schabussova I., Hudcovic T., Akgün J., Wiedermann U., et al. . (2013). Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 31, 5405–5412. 10.1016/j.vaccine.2013.09.014 PubMed DOI
Segura Munoz R. R., Mantz S., Martínez I., Li F., Schmaltz R. J., Pudlo N. A., et al. . (2022). Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes. ISME J. 16, 1594–1604. 10.1038/s41396-022-01208-9 PubMed DOI PMC
Shah C., Baral R., Bartaula B., Shrestha L. B. (2019). Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC Microbiol. 19:204. 10.1186/s12866-019-1587-3 PubMed DOI PMC
Sheshko V., Hejnova J., Rehakova Z., Sinkora J., Faldyna M., Alexa P., et al. . (2006). HlyA knock out yields a safer Escherichia coli A0 34/86 variant with unaffected colonization capacity in piglets. FEMS Immunol. Med. Microbiol. 48, 257–266. 10.1111/j.1574-695X.2006.00140.x PubMed DOI
Sonnenborn U. (2016). Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett. 363:fnw212. 10.1093/femsle/fnw212 PubMed DOI
Souza É. L., Elian S. D., Paula L. M., Garcia C. C., Vieira A. T., Teixeira M. M., et al. . (2016). Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model. J. Med. Microbiol. 65, 201–210. 10.1099/jmm.0.000222 PubMed DOI
Splichal I., Donovan S. M., Splichalova Z., Neuzil Bunesova V., Vlkova E., Jenistova V., et al. . (2019). Colonization of germ-free piglets with commensal Lactobacillus amylovorus, Lactobacillus mucosae, and probiotic E. coli Nissle 1917 and their interference with Salmonella Typhimurium. Microorganisms 7:273. 10.3390/microorganisms7080273 PubMed DOI PMC
Splichalova A., Splichal I., Sonnenborn U., Rada V. (2014). A modified MacConkey agar for selective enumeration of necrotoxigenic E. coli O55 and probiotic E. coli Nissle 1917. J Microbiol Methods. 104, 82–86. 10.1016/j.mimet.2014.06.017 PubMed DOI
Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., Splichal I. (2011). Interference of Bifidobacterium choerinum or Escherichia coli Nissle 1917 with Salmonella Typhimurium in gnotobiotic piglets correlates with cytokine patterns in blood and intestine. Clin. Exp. Immunol. 163, 242–249. 10.1111/j.1365-2249.2010.04283.x PubMed DOI PMC
Sprockett D., Fukami T., Relman D. A. (2018). Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205. 10.1038/nrgastro.2017.173 PubMed DOI PMC
Srutkova D., Schwarzer M., Hudcovic T., Zakostelska Z., Drab V., Spanova A., et al. . (2015). Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS ONE 10:e0134050. 10.1371/journal.pone.0134050 PubMed DOI PMC
Tabaqchali S., O'Donoghue D. P., Bettelheim K. A. (1978). Escherichia coli antibodies in patients with inflammatory bowel disease. Gut 19, 108–113. 10.1136/gut.19.2.108 PubMed DOI PMC
Trebichavsky I., Splichal I., Rada V., Splichalova A. (2010). Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr. Rev. 68, 459–464. 10.1111/j.1753-4887.2010.00305.x PubMed DOI
Wine E., Ossa J. C., Gray-Owen S. D., Sherman P. M. (2009). Adherent-invasive Escherichia coli, strain LF82 disrupts apical junctional complexes in polarized epithelia. BMC Microbiol. 9:180. 10.1186/1471-2180-9-180 PubMed DOI PMC
Wymore Brand M., Proctor A. L., Hostetter J. M., Zhou N., Friedberg I., Jergens A. E., et al. . (2022). Vertical transmission of attaching and invasive E. coli from the dam to neonatal mice predisposes to more severe colitis following exposure to a colitic insult later in life. PloS ONE 17:e0266005. 10.1371/journal.pone.0266005 PubMed DOI PMC
Yoshimatsu Y., Mikami Y., Kanai T. (2021). Bacteriotherapy for inflammatory bowel disease. Inflamm. Regen. 41:3. 10.1186/s41232-020-00153-4 PubMed DOI PMC
Zhang Y. Z., Li Y. Y. (2014). Inflammatory bowel disease: pathogenesis. World J. Gastroenterol. 20, 91–99. 10.3748/wjg.v20.i1.91 PubMed DOI PMC
Zyrek A. A., Cichon C., Helms S., Enders C., Sonnenborn U., Schmidt M. A. (2007). Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution, resulting in tight junction and epithelial barrier repair. Cell. Microbiol. 9, 804–816. 10.1111/j.1462-5822.2006.00836.x PubMed DOI