Francisella tularensis subsp. holarctica Releases Differentially Loaded Outer Membrane Vesicles Under Various Stress Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31649645
PubMed Central
PMC6795709
DOI
10.3389/fmicb.2019.02304
Knihovny.cz E-zdroje
- Klíčová slova
- FSC200, Francisella tularensis, host–pathogen interaction, outer membrane vesicles, stress response, virulence factor,
- Publikační typ
- časopisecké články MeSH
Francisella tularensis is a Gram-negative, facultative intracellular bacterium, causing a severe disease called tularemia. It secretes unusually shaped nanotubular outer membrane vesicles (OMV) loaded with a number of virulence factors and immunoreactive proteins. In the present study, the vesicles were purified from a clinical isolate of subsp. holarctica strain FSC200. We here provide a comprehensive proteomic characterization of OMV using a novel approach in which a comparison of OMV and membrane fraction is performed in order to find proteins selectively enriched in OMV vs. membrane. Only these proteins were further considered to be really involved in the OMV function and/or their exceptional structure. OMV were also isolated from bacteria cultured under various cultivation conditions simulating the diverse environments of F. tularensis life cycle. These included conditions mimicking the milieu inside the mammalian host during inflammation: oxidative stress, low pH, and high temperature (42°C); and in contrast, low temperature (25°C). We observed several-fold increase in vesiculation rate and significant protein cargo changes for high temperature and low pH. Further proteomic characterization of stress-derived OMV gave us an insight how the bacterium responds to the hostile environment of a mammalian host through the release of differentially loaded OMV. Among the proteins preferentially and selectively packed into OMV during stressful cultivations, the previously described virulence factors connected to the unique intracellular trafficking of Francisella were detected. Considerable changes were also observed in a number of proteins involved in the biosynthesis and metabolism of the bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids. Data are available via ProteomeXchange with identifier PXD013074.
Faculty of Science Jan Evangelista Purkyně University Ústí nad Labem Czechia
Institute of Microbiology of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Apicella M. A., Post D. M. B., Fowler A. C., Jones B. D., Rasmussen J. A., Hunt J. R., et al. (2010). Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One 5:e11060. 10.1371/journal.pone.0011060 PubMed DOI PMC
Bandara A. B., Champion A. E., Wang X., Berg G., Apicella M. A., McLendon M. K., et al. (2011). Isolation and mutagenesis of a capsule-Like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One 6:e19003. 10.1371/journal.pone.0019003 PubMed DOI PMC
Baumgarten T., Sperling S., Seifert J., Bergen M., von Steiniger F., Wick L. Y., et al. (2012). Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 78 6217–6224. 10.1128/AEM.01525-12 PubMed DOI PMC
Benada O., Pokorný V. (1990). Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films. J. Electron Microsc. Tech. 16 235–239. 10.1002/jemt.1060160304 PubMed DOI
Bhatnagar N. B., Elkins K. L., Fortier A. H. (1995). Heat stress alters the virulence of a rifampin-resistant mutant of Francisella tularensis LVS. Infect. Immun. 63 154–159. PubMed PMC
Bonnington K. E., Kuehn M. J. (2014). Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta Mol. Cell Res. 1843 1612–1619. 10.1016/j.bbamcr.2013.12.011 PubMed DOI PMC
Bröms J. E., Meyer L., Sjöstedt A. (2016). A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion. Virulence 8 821–847. 10.1080/21505594.2016.1258507 PubMed DOI PMC
Bröms J. E., Meyer L., Sun K., Lavander M., Sjöstedt A. (2012). Unique substrates secreted by the Type VI secretion system of Francisella tularensis during intramacrophage infection. PLoS One 7:e50473. 10.1371/journal.pone.0050473 PubMed DOI PMC
Brudal E., Lampe E. O., Reubsaet L., Roos N., Hegna I. K., Thrane I. M., et al. (2015). Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. Fish Shellfish Immunol. 42 50–57. 10.1016/j.fsi.2014.10.025 PubMed DOI
Celli J., Zahrt T. C. (2013). Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 3:a010314. 10.1101/cshperspect.a010314 PubMed DOI PMC
Chamberlain R. E. (1965). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl. Microbiol. 13 232–235. PubMed PMC
Champion A. E., Bandara A. B., Mohapatra N., Fulton K. M., Twine S. M., Inzana T. J. (2018). Further characterization of the capsule-like complex (clc) produced by Francisella tularensis Subspecies tularensis: protective efficacy and similarity to outer membrane vesicles. Front. Cell. Infect. Microbiol. 8:182. 10.3389/fcimb.2018.00182 PubMed DOI PMC
Chandler J. C., Sutherland M. D., Harton M. R., Molins C. R., Anderson R. V., Heaslip D. G., et al. (2015). Francisella tularensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia. J. Proteome Res. 14 664–675. 10.1021/pr500628k PubMed DOI PMC
Chung M.-C., Dean S., Marakasova E. S., Nwabueze A. O., van Hoek M. L. (2014). Chitinases are negative regulators of Francisella novicida biofilms. PLoS One 9:e93119. 10.1371/journal.pone.0093119 PubMed DOI PMC
Clemens D. L., Ge P., Lee B.-Y., Horwitz M. A., Zhou Z. H. (2015). Atomic structure and mutagenesis of T6SS reveals interlaced array essential to function. Cell 160 940–951. 10.1016/j.cell.2015.02.005 PubMed DOI PMC
Clemens D. L., Horwitz M. A. (2007). Uptake and intracellular fate of Francisella tularensis in human macrophages. Ann. N. Y. Acad. Sci. 1105 160–186. 10.1196/annals.1409.001 PubMed DOI
Clemens D. L., Lee B.-Y., Horwitz M. A. (2004). Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 72 3204–3217. 10.1128/IAI.72.6.3204-3217.2004 PubMed DOI PMC
Clemens D. L., Lee B.-Y., Horwitz M. A. (2009). Francisella tularensis phagosomal escape does not require acidification of the phagosome. Infect. Immun. 77 1757–1773. 10.1128/IAI.01485-8 PubMed DOI PMC
Cooke A. C., Nello A. V., Ernst R. K., Schertzer J. W. (2019). Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS One 14:e0212275. 10.1371/journal.pone.0212275 PubMed DOI PMC
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26 1367–1372. 10.1038/nbt.1511 PubMed DOI
Dennis D. T., Inglesby T. V., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., et al. (2001). Tularemia as a biological weapon: medical and public health management. JAMA 285 2763–2773. 10.1001/jama.285.21.2763 PubMed DOI
Ellis T. N., Kuehn M. J. (2010). Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74 81–94. 10.1128/MMBR.00031-9 PubMed DOI PMC
Emiola A., Andrews S. S., Heller C., George J. (2016). Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli. Proc. Natl. Acad. Sci. 113 3108–3113. 10.1073/pnas.1521168113 PubMed DOI PMC
Forestal C. A., Gil H., Monfett M., Noah C. E., Platz G. J., Thanassi D. G., et al. (2008). A conserved and immunodominant lipoprotein of Francisella tularensis is proinflammatory but not essential for virulence. Microb. Pathog. 44 512–523. 10.1016/j.micpath.2008.01.003 PubMed DOI PMC
Gil H., Benach J. L., Thanassi D. G. (2004). Presence of pili on the surface of Francisella tularensis. Infect. Immun. 72 3042–3047. 10.1128/IAI.72.5.3042-3047.2004 PubMed DOI PMC
Harris J. R., Gebauer W., Markl J. (1995). Keyhole limpet haemocyanin: negative staining in the presence of trehalose. Micron 26 25–33. 10.1016/0968-4328(94)00049-V PubMed DOI
Haurat M. F., Aduse-Opoku J., Rangarajan M., Dorobantu L., Gray M. R., Curtis M. A., et al. (2011). Selective sorting of cargo proteins into bacterial membrane vesicles. J. Biol. Chem. 286 1269–1276. 10.1074/jbc.M110.185744 PubMed DOI PMC
Haurat M. F., Elhenawy W., Feldman M. F. (2015). Prokaryotic membrane vesicles: new insights on biogenesis and biological roles. Biol. Chem. 396 95–109. 10.1515/hsz-2014-0183 PubMed DOI
Hazlett K. R. O., Caldon S. D., McArthur D. G., Cirillo K. A., Kirimanjeswara G. S., Magguilli M. L., et al. (2008). Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect. Immun. 76 4479–4488. 10.1128/IAI.00610-8 PubMed DOI PMC
Hazlett K. R. O., Cirillo K. A. (2009). Environmental adaptation of Francisella tularensis. Microbes Infect. 11 828–834. 10.1016/j.micinf.2009.06.001 PubMed DOI PMC
Holland K. M., Rosa S. J., Kristjansdottir K., Wolfgeher D., Franz B. J., Zarrella T. M., et al. (2017). Differential growth of Francisella tularensis, which alters expression of virulence factors, dominant antigens, and surface-carbohydrate synthases, governs the apparent virulence of Ft SchuS4 to immunized animals. Front. Microbiol. 8:1158. 10.3389/fmicb.2017.01158 PubMed DOI PMC
Horzempa J., Carlson P. E., O’Dee D. M., Shanks R. M., Nau G. J. (2008). Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol. 8:172. 10.1186/1471-2180-8-172 PubMed DOI PMC
Janovská S., Pávková I., Hubálek M., Lenčo J., Macela A., Stulík J. (2007). Identification of immunoreactive antigens in membrane proteins enriched fraction from Francisella tularensis LVS. Immunol. Lett. 108 151–159. 10.1016/j.imlet.2006.12.004 PubMed DOI
Johansson A., Berglund L., Eriksson U., Göransson I., Wollin R., Forsman M., et al. (2000). Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J. Clin. Microbiol. 38 22–26. PubMed PMC
Jones C. L., Napier B. A., Sampson T. R., Llewellyn A. C., Schroeder M. R., Weiss D. S. (2012). Subversion of host recognition and defense systems by Francisella spp. Microbiol. Mol. Biol. Rev. 76 383–404. 10.1128/MMBR.05027-11 PubMed DOI PMC
Kaparakis-Liaskos M., Ferrero R. L. (2015). Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15 375–387. 10.1038/nri3837 PubMed DOI
Kilmury S. L. N., Twine S. M. (2011). The Francisella tularensis proteome and its recognition by antibodies. Front. Microbiol. 1:143. 10.3389/fmicb.2010.00143 PubMed DOI PMC
Konecna K., Hernychova L., Reichelova M., Lenco J., Klimentova J., Stulik J., et al. (2010). Comparative proteomic profiling of culture filtrate proteins of less and highly virulent Francisella tularensis strains. Proteomics 10 4501–4511. 10.1002/pmic.201000248 PubMed DOI
Krey J. F., Wilmarth P. A., Shin J.-B., Klimek J., Sherman N. E., Jeffery E. D., et al. (2014). Accurate label-free protein quantitation with high- and low-resolution mass spectrometers. J. Proteome Res. 13 1034–1044. 10.1021/pr401017h PubMed DOI PMC
Kulp A., Kuehn M. J. (2010). Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64 163–184. 10.1146/annurev.micro.091208.073413 PubMed DOI PMC
Larsson P., Oyston P. C. F., Chain P., Chu M. C., Duffield M., Fuxelius H.-H., et al. (2005). The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Genet. 37 153–159. 10.1038/ng1499 PubMed DOI
Lenco J., Hubálek M., Larsson P., Fucíková A., Brychta M., Macela A., et al. (2007). Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol. Lett. 269 11–21. 10.1111/j.1574-6968.2006.00595.x PubMed DOI
Lenco J., Link M., Tambor V., Zaková J., Cerveny L., Stulik A. J. (2009). iTRAQ quantitative analysis of Francisella tularensis ssp. holarctica live vaccine strain and Francisella tularensis ssp. tularensis SCHU S4 response to different temperatures and stationary phases of growth. Proteomics 9 2875–2882. 10.1002/pmic.200700820 PubMed DOI
Lenco J., Pavkova I., Hubalek M., Stulik J. (2005). Insights into the oxidative stress response in Francisella tularensis LVS and its mutant DeltaiglC1+2 by proteomics analysis. FEMS Microbiol. Lett. 246 47–54. 10.1016/j.femsle.2005.03.040 PubMed DOI
Li Y., Powell D. A., Shaffer S. A., Rasko D. A., Pelletier M. R., Leszyk J. D., et al. (2012). LPS remodeling is an evolved survival strategy for bacteria. Proc. Natl. Acad. Sci. U.S.A. 109 8716–8721. 10.1073/pnas.1202908109 PubMed DOI PMC
Lindgren H., Honn M., Salomonsson E., Kuoppa K., Forsberg Å, Sjöstedt A. (2011). Iron content differs between Francisella tularensis subspecies tularensis and subspecies holarctica strains and correlates to their susceptibility to H2O2-induced killing. Infect. Immun. 79 1218–1224. 10.1128/IAI.01116-0 PubMed DOI PMC
Lindgren H., Shen H., Zingmark C., Golovliov I., Conlan W., Sjöstedt A. (2007). Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect. Immun. 75 1303–1309. 10.1128/IAI.01717-6 PubMed DOI PMC
MacDonald I. A., Kuehn M. J. (2013). Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J. Bacteriol. 195 2971–2981. 10.1128/JB.02267-12 PubMed DOI PMC
Malinverni J. C., Silhavy T. J. (2011). Assembly of outer membrane β-barrel proteins: the Bam complex. EcoSal Plus 4 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231818/ PubMed PMC
Manning A. J., Kuehn M. J. (2011). Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11:258. 10.1186/1471-2180-11-258 PubMed DOI PMC
Margolis J. J., El-Etr S., Joubert L.-M., Moore E., Robison R., Rasley A., et al. (2010). Contributions of Francisella tularensis subsp. novicida chitinases and sec secretion system to biofilm formation on chitin. Appl. Environ. Microbiol. 76 596–608. 10.1128/AEM.02037-9 PubMed DOI PMC
McBroom A. J., Kuehn M. J. (2007). Release of outer membrane vesicles by gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63 545–558. 10.1111/j.1365-2958.2006.05522.x PubMed DOI PMC
McCaig W. D., Koller A., Thanassi D. G. (2013). Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 195 1120–1132. 10.1128/JB.02007-12 PubMed DOI PMC
Melillo A. A., Bakshi C. S., Melendez J. A. (2010). Francisella tularensis antioxidants harness reactive oxygen species to restrict macrophage signaling and cytokine production. J. Biol. Chem. 285:27553. 10.1074/jbc.M110.144394 PubMed DOI PMC
Mohapatra N. P., Soni S., Rajaram M. V. S., Strandberg K. L., Gunn J. S. (2013). Type A Francisella tularensis acid phosphatases contribute to pathogenesis. PLoS One 8:56834. 10.1371/journal.pone.0056834 PubMed DOI PMC
Olsen I., Amano A. (2015). Outer membrane vesicles – offensive weapons or good Samaritans? J. Oral Microbiol. 7:27468. 10.3402/jom.v7.27468 PubMed DOI PMC
Oyston P. C. F. (2008). Francisella tularensis: unravelling the secrets of an intracellular pathogen. J. Med. Microbiol. 57 921–930. 10.1099/jmm.0.2008/000653-0 PubMed DOI
Pávková I., Brychta M., Strašková A., Schmidt M., Macela A., Stulík J. (2013). Comparative proteome profiling of host–pathogen interactions: insights into the adaptation mechanisms of Francisella tularensis in the host cell environment. Appl. Microbiol. Biotechnol. 97 10103–10115. 10.1007/s00253-013-5321-z PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47 D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC
Pierson T., Matrakas D., Taylor Y. U., Manyam G., Morozov V. N., Zhou W., et al. (2011). Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 10 954–967. 10.1021/pr1009756 PubMed DOI
Powell D. A., Li Y., Ernst R. K. (2012). Turning up Francisella pathogenesis. Virulence 3 594–595. 10.4161/viru.22496 PubMed DOI PMC
Prior J. L., Prior R. G., Hitchen P. G., Diaper H., Griffin K. F., Morris H. R., et al. (2003). Characterization of the O antigen gene cluster and structural analysis of the O antigen of Francisella tularensis subsp. tularensis. J. Med. Microbiol. 52 845–851. 10.1099/jmm.0.05184-0 PubMed DOI
Raynaud C., Meibom K. L., Lety M.-A., Dubail I., Candela T., Frapy E., et al. (2007). Role of the wbt locus of Francisella tularensis in lipopolysaccharide O-antigen biogenesis and pathogenicity. Infect. Immun. 75 536–541. 10.1128/IAI.01429-6 PubMed DOI PMC
Rohmer L., Fong C., Abmayr S., Wasnick M., Larson Freeman T. J., Radey M., et al. (2007). Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol. 8:R102. 10.1186/gb-2007-8-6-r102 PubMed DOI PMC
Rowe H. M., Huntley J. F. (2015). From the outside-in: the Francisella tularensis envelope and virulence. Front. Cell. Infect. Microbiol. 5:94. 10.3389/fcimb.2015.00094 PubMed DOI PMC
Sampath V., McCaig W. D., Thanassi D. G. (2017). Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol. Microbiol. 107 523–541. 10.1111/mmi.13897 PubMed DOI
Shaffer S. A., Harvey M. D., Goodlett D. R., Ernst R. K. (2007). Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 18 1080–1092. 10.1016/j.jasms.2007.03.008 PubMed DOI PMC
Siebert C., Lindgren H., Ferré S., Villers C., Boisset S., Perard J., et al. (2019). Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. Emerg. Microbes Infect. 8 808–822. 10.1080/22221751.2019.1615848 PubMed DOI PMC
Sjöstedt A., Sandström G., Tärnvik A. (1992). Humoral and cell-mediated immunity in mice to a 17-kilodalton lipoprotein of Francisella tularensis expressed by Salmonella typhimurium. Infect. Immun. 60 2855–2862. PubMed PMC
Spidlova P., Stulik J. (2017). Francisella tularensis type VI secretion system comes of age. Virulence 8 628–631. 10.1080/21505594.2016.1278336 PubMed DOI PMC
Straskova A., Spidlova P., Mou S., Worsham P., Putzova D., Pavkova I., et al. (2015). Francisella tularensis type B ΔdsbA mutant protects against type A strain and induces strong inflammatory cytokine and Th1-like antibody response in vivo. Pathog. Dis. 73:ftv058. 10.1093/femspd/ftv058 PubMed DOI PMC
Thakran S., Li H., Lavine C. L., Miller M. A., Bina J. E., Bina X. R., et al. (2008). Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J. Biol. Chem. 283 3751–3760. 10.1074/jbc.M706854200 PubMed DOI
Traub A., Mager J., Grossowicz N. (1955). Studies on the nutrition of Pasteurella tularensis. J. Bacteriol. 70 60–69. PubMed PMC
Twine S. M., Mykytczuk N. C. S., Petit M. D., Shen H., Sjöstedt A., Wayne Conlan J., et al. (2006). In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem. Biophys. Res. Commun. 345 1621–1633. 10.1016/j.bbrc.2006.05.070 PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13 731–740. 10.1038/nmeth.3901 PubMed DOI
van Hoek M. L. (2013). Biofilms an advancement in our understanding of Francisella species. Virulence 4 833–846. 10.4161/viru.27023 PubMed DOI PMC
Wallqvist A., Memišević V., Zavaljevski N., Pieper R., Rajagopala S. V., Kwon K., et al. (2015). Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors. BMC Genomics 16:1106. 10.1186/s12864-015-2351-1 PubMed DOI PMC
Wehrly T. D., Chong A., Virtaneva K., Sturdevant D. E., Child R., Edwards J. A., et al. (2009). Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell. Microbiol. 11 1128–1150. 10.1111/j.1462-5822.2009.01316.x PubMed DOI PMC
Zarrella T. M., Singh A., Bitsaktsis C., Rahman T., Sahay B., Feustel P. J., et al. (2011). Host-adaptation of Francisella tularensis alters the bacterium’s surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 6:e22335. 10.1371/journal.pone.0022335 PubMed DOI PMC
Zellner B., Huntley J. F. (2019). Ticks and tularemia: do we know what we don’t know? Front. Cell. Infect. Microbiol. 9:146. 10.3389/fcimb.2019.00146 PubMed DOI PMC
Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors