Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors

. 2020 Oct 21 ; 8 (10) : . [epub] 20201021

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33096715

Grantová podpora
Long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence Ministerstvo Obrany České Republiky

Odkazy

PubMed 33096715
PubMed Central PMC7588896
DOI 10.3390/microorganisms8101622
PII: microorganisms8101622
Knihovny.cz E-zdroje

Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.

Zobrazit více v PubMed

Rohmer L., Fong C., Abmayr S., Wasnick M., Larson Freeman T.J., Radey M., Guina T., Svensson K., Hayden H.S., Jacobs M., et al. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol. 2007;8:R102. doi: 10.1186/gb-2007-8-6-r102. PubMed DOI PMC

McCoy G.W., Chapin C.W. Further Observations on a Plague-Like Disease of Rodents with a Preliminary Note on the Causative Agent, Bacterium tularense. J. Infect. Dis. 1912;10:61–72. doi: 10.1093/infdis/10.1.61. DOI

Francis E. Tularemia Francis 1921: A new Diseasae of Man. J. Am. Med. Assoc. 1922;78:1015–1018.

Checroun C., Wehrly T.D., Fischer E.R., Hayes S.F., Celli J. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. USA. 2006;103:14578–14583. doi: 10.1073/pnas.0601838103. PubMed DOI PMC

Clemens D.L., Lee B.-Y., Horwitz M.A. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 2004;72:3204–3217. doi: 10.1128/IAI.72.6.3204-3217.2004. PubMed DOI PMC

Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjöstedt A. An Attenuated Strain of the Facultative Intracellular Bacterium Francisella tularensis Can Escape the Phagosome of Monocytic Cells. Infect. Immun. 2003;71:5940–5950. doi: 10.1128/IAI.71.10.5940-5950.2003. PubMed DOI PMC

Santic M., Molmeret M., Barker J.R., Klose K.E., Dekanic A., Doric M., Abu Kwaik Y. A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell. Microbiol. 2007;9:2391–2403. doi: 10.1111/j.1462-5822.2007.00968.x. PubMed DOI

Santic M., Asare R., Skrobonja I., Jones S., Abu Kwaik Y. Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect. Immun. 2008;76:2671–2677. doi: 10.1128/IAI.00185-08. PubMed DOI PMC

Gill V., Cunha B.A. Tularemia pneumonia. Semin. Respir. Infect. 1997;12:61–67. PubMed

Stewart S.J. Tularemia: Association with hunting and farming. FEMS Immunol. Med. Microbiol. 1996;13:197–199. doi: 10.1111/j.1574-695X.1996.tb00236.x. PubMed DOI

Sandström G., Löfgren S., Tärnvik A. A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect. Immun. 1988;56:1194–1202. doi: 10.1128/IAI.56.5.1194-1202.1988. PubMed DOI PMC

Su J., Yang J., Zhao D., Kawula T.H., Banas J.A., Zhang J.-R. Genome-wide identification of Francisella tularensis virulence determinants. Infect. Immun. 2007;75:3089–3101. doi: 10.1128/IAI.01865-06. PubMed DOI PMC

Miller S.I., Ernst R.K., Bader M.W. LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 2005;3:36–46. doi: 10.1038/nrmicro1068. PubMed DOI

Wang X., Ribeiro A.A., Guan Z., Abraham S.N., Raetz C.R.H. Attenuated virulence of a Francisella mutant lacking the lipid A 4′-phosphatase. Proc. Natl. Acad. Sci. USA. 2007;104:4136–4141. doi: 10.1073/pnas.0611606104. PubMed DOI PMC

Ancuta P., Pedron T., Girard R., Sandström G., Chaby R. Inability of the Francisella tularensis lipopolysaccharide to mimic or to antagonize the induction of cell activation by endotoxins. Infect. Immun. 1996;64:2041–2046. doi: 10.1128/IAI.64.6.2041-2046.1996. PubMed DOI PMC

Sandström G., Sjöstedt A., Johansson T., Kuoppa K., Williams J.C. Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol. Immunol. 1992;5:201–210. doi: 10.1111/j.1574-6968.1992.tb05902.x. PubMed DOI

Pierson T., Matrakas D., Taylor Y.U., Manyam G., Morozov V.N., Zhou W., van Hoek M.L. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 2011;10:954–967. doi: 10.1021/pr1009756. PubMed DOI

Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofroňová O., Benada O., Stulik J. Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 2019;10 doi: 10.3389/fmicb.2019.02304. PubMed DOI PMC

Lindgren H., Golovliov I., Baranov V., Ernst R.K., Telepnev M., Sjöstedt A. Factors affecting the escape of Francisella tularensis from the phagolysosome. J. Med. Microbiol. 2004;53:953–958. doi: 10.1099/jmm.0.45685-0. PubMed DOI

Nano F.E., Zhang N., Cowley S.C., Klose K.E., Cheung K.K.M., Roberts M.J., Ludu J.S., Letendre G.W., Meierovics A.I., Stephens G., et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol. 2004;186:6430–6436. doi: 10.1128/JB.186.19.6430-6436.2004. PubMed DOI PMC

Bröms J.E., Sjöstedt A., Lavander M. The Role of the Francisella tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front. Microbiol. 2010;1 doi: 10.3389/fmicb.2010.00136. PubMed DOI PMC

de Bruin O.M., Ludu J.S., Nano F.E. The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 2007;7:1. doi: 10.1186/1471-2180-7-1. PubMed DOI PMC

Larsson P., Elfsmark D., Svensson K., Wikström P., Forsman M., Brettin T., Keim P., Johansson A. Molecular Evolutionary Consequences of Niche Restriction in Francisella tularensis, a Facultative Intracellular Pathogen. PLoS Pathog. 2009;5 doi: 10.1371/journal.ppat.1000472. PubMed DOI PMC

Larsson P., Oyston P.C.F., Chain P., Chu M.C., Duffield M., Fuxelius H.-H., Garcia E., Hälltorp G., Johansson D., Isherwood K.E., et al. The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat. Genet. 2005;37:153–159. doi: 10.1038/ng1499. PubMed DOI

Santic M., Molmeret M., Klose K.E., Jones S., Kwaik Y.A. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell. Microbiol. 2005;7:969–979. doi: 10.1111/j.1462-5822.2005.00526.x. PubMed DOI

Bröms J.E., Lavander M., Meyer L., Sjöstedt A. IglG and IglI of the Francisella Pathogenicity Island Are Important Virulence Determinants of Francisella tularensis LVS. Infect. Immun. 2011;79:3683–3696. doi: 10.1128/IAI.01344-10. PubMed DOI PMC

Lauriano C.M., Barker J.R., Yoon S.-S., Nano F.E., Arulanandam B.P., Hassett D.J., Klose K.E. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc. Natl. Acad. Sci. USA. 2004;101:4246–4249. doi: 10.1073/pnas.0307690101. PubMed DOI PMC

Brotcke A., Weiss D.S., Kim C.C., Chain P., Malfatti S., Garcia E., Monack D.M. Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect. Immun. 2006;74:6642–6655. doi: 10.1128/IAI.01250-06. PubMed DOI PMC

Guina T., Radulovic D., Bahrami A.J., Bolton D.L., Rohmer L., Jones-Isaac K.A., Chen J., Gallagher L.A., Gallis B., Ryu S., et al. MglA regulates Francisella tularensis subsp. novicida (Francisella novicida) response to starvation and oxidative stress. J. Bacteriol. 2007;189:6580–6586. doi: 10.1128/JB.00809-07. PubMed DOI PMC

Charity J.C., Costante-Hamm M.M., Balon E.L., Boyd D.H., Rubin E.J., Dove S.L. Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog. 2007;3:e84. doi: 10.1371/journal.ppat.0030084. PubMed DOI PMC

Brotcke A., Monack D.M. Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect. Immun. 2008;76:3473–3480. doi: 10.1128/IAI.00430-08. PubMed DOI PMC

Charity J.C., Blalock L.T., Costante-Hamm M.M., Kasper D.L., Dove S.L. Small molecule control of virulence gene expression in Francisella tularensis. PLoS Pathog. 2009;5:e1000641. doi: 10.1371/journal.ppat.1000641. PubMed DOI PMC

Dai S., Mohapatra N.P., Schlesinger L.S., Gunn J.S. Regulation of Francisella tularensis virulence. Front. Microbiol. 2010;1:144. doi: 10.3389/fmicb.2010.00144. PubMed DOI PMC

Baron G.S., Nano F.E. MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol. Microbiol. 1998;29:247–259. doi: 10.1046/j.1365-2958.1998.00926.x. PubMed DOI

Bönquist L., Lindgren H., Golovliov I., Guina T., Sjöstedt A. MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect. Immun. 2008;76:3502–3510. doi: 10.1128/IAI.00226-08. PubMed DOI PMC

Cuthbert B.J., Brennan R.G., Schumacher M.A. Structural and Biochemical Characterization of the Francisella tularensis Pathogenicity Regulator, Macrophage Locus Protein A (MglA) PLoS ONE. 2015;10:e0128225. doi: 10.1371/journal.pone.0128225. PubMed DOI PMC

Rohlfing A.E., Dove S.L. Coordinate control of virulence gene expression in Francisella tularensis involves direct interaction between key regulators. J. Bacteriol. 2014;196:3516–3526. doi: 10.1128/JB.01700-14. PubMed DOI PMC

Ramsey K.M., Osborne M.L., Vvedenskaya I.O., Su C., Nickels B.E., Dove S.L. Ubiquitous Promoter-Localization of Essential Virulence Regulators in Francisella tularensis. PLoS Pathog. 2015;11 doi: 10.1371/journal.ppat.1004793. PubMed DOI PMC

Cuthbert B.J., Ross W., Rohlfing A.E., Dove S.L., Gourse R.L., Brennan R.G., Schumacher M.A. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev. 2017;31:1549–1560. doi: 10.1101/gad.303701.117. PubMed DOI PMC

Wrench A.P., Gardner C.L., Siegel S.D., Pagliai F.A., Malekiha M., Gonzalez C.F., Lorca G.L. MglA/SspA Complex Interactions Are Modulated by Inorganic Polyphosphate. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0076428. PubMed DOI PMC

Faron M., Fletcher J.R., Rasmussen J.A., Long M.E., Allen L.-A.H., Jones B.D. The Francisella tularensis migR, trmE, and cphA Genes Contribute to F. tularensis Pathogenicity Island Gene Regulation and Intracellular Growth by Modulation of the Stress Alarmone ppGpp. Infect. Immun. 2013;81:2800–2811. doi: 10.1128/IAI.00073-13. PubMed DOI PMC

Stojkova P., Spidlova P., Lenco J., Rehulkova H., Kratka L., Stulik J. HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence. 2018;9:754–770. doi: 10.1080/21505594.2018.1441588. PubMed DOI PMC

Meibom K.L., Forslund A.-L., Kuoppa K., Alkhuder K., Dubail I., Dupuis M., Forsberg A., Charbit A. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect. Immun. 2009;77:1866–1880. doi: 10.1128/IAI.01496-08. PubMed DOI PMC

Lenco J., Tambor V., Link M., Klimentova J., Dresler J., Peterek M., Charbit A., Stulik J. Changes in proteome of the Δhfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype. Proteomics. 2014;14:2400–2409. doi: 10.1002/pmic.201400198. PubMed DOI

Chambers J.R., Bender K.S. The RNA Chaperone Hfq Is Important for Growth and Stress Tolerance in Francisella novicida. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0019797. PubMed DOI PMC

Mortensen B.L., Fuller J.R., Taft-Benz S., Kijek T.M., Miller C.N., Huang M.T.H., Kawula T.H. Effects of the Putative Transcriptional Regulator IclR on Francisella tularensis Pathogenesis. Infect. Immun. 2010;78:5022. doi: 10.1128/IAI.00544-10. PubMed DOI PMC

Weiss D.S., Brotcke A., Henry T., Margolis J.J., Chan K., Monack D.M. In vivo negative selection screen identifies genes required for Francisella virulence. Proc. Natl. Acad. Sci. USA. 2007;104:6037–6042. doi: 10.1073/pnas.0609675104. PubMed DOI PMC

Fuller J.R. Ph.D. Thesis. University of North Carolina; Chapel Hill, NC, USA: 2008. Characterization of the Francisella Virulence Factor RipA. DOI

Ma Z., Russo V.C., Rabadi S.M., Jen Y., Catlett S.V., Bakshi C.S., Malik M. Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol. Microbiol. 2016;101:856–878. doi: 10.1111/mmi.13426. PubMed DOI PMC

Lindgren H., Shen H., Zingmark C., Golovliov I., Conlan W., Sjöstedt A. Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect. Immun. 2007;75:1303–1309. doi: 10.1128/IAI.01717-06. PubMed DOI PMC

Marghani D. Ph.D. Thesis. Touro College; New York, NY, USA: 2019. Characterization of the Role of Transcriptional Regulator of AraC/XylS Family in Tularemia Pathogenesis.

Pérard J., Nader S., Levert M., Arnaud L., Carpentier P., Siebert C., Blanquet F., Cavazza C., Renesto P., Schneider D., et al. Structural and functional studies of the metalloregulator Fur identify a promoter-binding mechanism and its role in Francisella tularensis virulence. Commun. Biol. 2018;1 doi: 10.1038/s42003-018-0095-6. PubMed DOI PMC

Sullivan J.T., Jeffery E.F., Shannon J.D., Ramakrishnan G. Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J. Bacteriol. 2006;188:3785–3795. doi: 10.1128/JB.00027-06. PubMed DOI PMC

Ramakrishnan G., Sen B., Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J. Biol. Chem. 2012;287:25191–25202. doi: 10.1074/jbc.M112.371856. PubMed DOI PMC

Lindgren H., Honn M., Salomonsson E., Kuoppa K., Forsberg Å., Sjöstedt A. Iron Content Differs between Francisella tularensis Subspecies tularensis and Subspecies holarctica Strains and Correlates to Their Susceptibility to H2O2-Induced Killing. Infect. Immun. 2011;79:1218–1224. doi: 10.1128/IAI.01116-10. PubMed DOI PMC

Mukhamedyarov D., Makarova K.S., Severinov K., Kuznedelov K. Francisella RNA polymerase contains a heterodimer of non-identical α subunits. BMC Mol. Biol. 2011;12:50. doi: 10.1186/1471-2199-12-50. PubMed DOI PMC

Grall N., Livny J., Waldor M., Barel M., Charbit A., Meibom K.L. Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH. Microbiology. 2009;155:2560–2572. doi: 10.1099/mic.0.029058-0. PubMed DOI PMC

Nonaka G., Blankschien M., Herman C., Gross C.A., Rhodius V.A. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 2006;20:1776–1789. doi: 10.1101/gad.1428206. PubMed DOI PMC

Alam A., Golovliov I., Javed E., Kumar R., Ådén J., Sjöstedt A. Dissociation between the critical role of ClpB of Francisella tularensis for the heat shock response and the DnaK interaction and its important role for efficient type VI secretion and bacterial virulence. PLoS Pathog. 2020;16:e1008466. doi: 10.1371/journal.ppat.1008466. PubMed DOI PMC

Durham-Colleran M.W., Verhoeven A.B., van Hoek M.L. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb. Ecol. 2010;59:457–465. doi: 10.1007/s00248-009-9586-9. PubMed DOI

Bell B.L., Mohapatra N.P., Gunn J.S. Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: Role of phosphorylation and evidence of MglA/SspA interaction. Infect. Immun. 2010;78:2189–2198. doi: 10.1128/IAI.00021-10. PubMed DOI PMC

Zogaj X., Wyatt G.C., Klose K.E. Cyclic di-GMP stimulates biofilm formation and inhibits virulence of Francisella novicida. Infect. Immun. 2012;80:4239–4247. doi: 10.1128/IAI.00702-12. PubMed DOI PMC

Ramsey K.M., Dove S.L. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor. Mol. Microbiol. 2016;101:688–700. doi: 10.1111/mmi.13418. PubMed DOI PMC

Hoang K.V., Fitch J., White P., Mohapatra N.P., Gunn J.S. The sensor kinase QseC regulates the unlinked PmrA response regulator and downstream gene expression in Francisella. J. Bacteriol. 2020 doi: 10.1128/JB.00321-20. PubMed DOI PMC

Freeman Z.N., Dorus S., Waterfield N.R. The KdpD/KdpE Two-Component System: Integrating K+ Homeostasis and Virulence. PLoS Pathog. 2013;9:e1003201. doi: 10.1371/journal.ppat.1003201. PubMed DOI PMC

Dean S.N., Milton M.E., Cavanagh J., van Hoek M.L. Francisella novicida Two-Component System Response Regulator BfpR Modulates iglC Gene Expression, Antimicrobial Peptide Resistance, and Biofilm Production. Front. Cell Infect. Microbiol. 2020;10 doi: 10.3389/fcimb.2020.00082. PubMed DOI PMC

De Reuse H., Taha M.K. RegF, an SspA homologue, regulates the expression of the Neisseria gonorrhoeae pilE gene. Res. Microbiol. 1997;148:289–303. doi: 10.1016/S0923-2508(97)81585-9. PubMed DOI

Merrell D.S., Hava D.L., Camilli A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol. Microbiol. 2002;43:1471–1491. doi: 10.1046/j.1365-2958.2002.02857.x. PubMed DOI

Xu Q., Dziejman M., Mekalanos J.J. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl. Acad. Sci. USA. 2003;100:1286–1291. doi: 10.1073/pnas.0337479100. PubMed DOI PMC

Hansen A.-M., Jin D.J. SspA up-regulates gene expression of the LEE pathogenicity island by decreasing H-NS levels in enterohemorrhagic Escherichia coli. BMC Microbiol. 2012;12:231. doi: 10.1186/1471-2180-12-231. PubMed DOI PMC

Hansen A.-M., Qiu Y., Yeh N., Blattner F.R., Durfee T., Jin D.J. SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol. Microbiol. 2005;56:719–734. doi: 10.1111/j.1365-2958.2005.04567.x. PubMed DOI

Honn M., Lindgren H., Sjöstedt A. The role of MglA for adaptation to oxidative stress of Francisella tularensis LVS. BMC Microbiol. 2012;12:14. doi: 10.1186/1471-2180-12-14. PubMed DOI PMC

Paul B.J., Berkmen M.B., Gourse R.L. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA. 2005;102:7823–7828. doi: 10.1073/pnas.0501170102. PubMed DOI PMC

Srivatsan A., Wang J.D. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 2008;11:100–105. doi: 10.1016/j.mib.2008.02.001. PubMed DOI

Rohmer L., Brittnacher M., Svensson K., Buckley D., Haugen E., Zhou Y., Chang J., Levy R., Hayden H., Forsman M., et al. Potential source of Francisella tularensis live vaccine strain attenuation determined by genome comparison. Infect. Immun. 2006;74:6895–6906. doi: 10.1128/IAI.01006-06. PubMed DOI PMC

Dean R.E., Ireland P.M., Jordan J.E., Titball R.W., Oyston P.C.F. RelA regulates virulence and intracellular survival of Francisella novicida. Microbiology. 2009;155:4104–4113. doi: 10.1099/mic.0.031021-0. PubMed DOI

Buchan B.W., McCaffrey R.L., Lindemann S.R., Allen L.-A.H., Jones B.D. Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect. Immun. 2009;77:2517–2529. doi: 10.1128/IAI.00229-09. PubMed DOI PMC

Michán C., Manchado M., Dorado G., Pueyo C. In Vivo Transcription of the Escherichia coli oxyRRegulon as a Function of Growth Phase and in Response to Oxidative Stress. J. Bacteriol. 1999;181:2759–2764. doi: 10.1128/JB.181.9.2759-2764.1999. PubMed DOI PMC

Honn M., Lindgren H., Bharath G.K., Sjöstedt A. Lack of OxyR and KatG Results in Extreme Susceptibility of Francisella tularensis LVS to Oxidative Stress and Marked Attenuation In Vivo. Front. Cell Infect. Microbiol. 2017;7 doi: 10.3389/fcimb.2017.00014. PubMed DOI PMC

Alharbi A., Rabadi S.M., Alqahtani M., Marghani D., Worden M., Ma Z., Malik M., Bakshi C.S. Role of peroxiredoxin of the AhpC/TSA family in antioxidant defense mechanisms of Francisella tularensis. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0213699. PubMed DOI PMC

Carlson P.E., Horzempa J., O’Dee D.M., Robinson C.M., Neophytou P., Labrinidis A., Nau G.J. Global Transcriptional Response to Spermine, a Component of the Intramacrophage Environment, Reveals Regulation of Francisella Gene Expression through Insertion Sequence Elements. J. Bacteriol. 2009;191:6855–6864. doi: 10.1128/JB.00995-09. PubMed DOI PMC

Igarashi K., Kashiwagi K. Polyamines: Mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2000;271:559–564. doi: 10.1006/bbrc.2000.2601. PubMed DOI

Mahillon J., Chandler M. Insertion sequences. Microbiol. Mol. Biol. Rev. 1998;62:725–774. doi: 10.1128/MMBR.62.3.725-774.1998. PubMed DOI PMC

de Fernandez M.T.F., Eoyang L., August J.T. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature. 1968;219:588–590. doi: 10.1038/219588a0. PubMed DOI

Azam T.A., Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 1999;274:33105–33113. doi: 10.1074/jbc.274.46.33105. PubMed DOI

Updegrove T.B., Correia J.J., Galletto R., Bujalowski W., Wartell R.M. E. coli DNA associated with isolated Hfq interacts with Hfq’s distal surface and C-terminal domain. Biochim. Biophys. Acta. 2010;1799:588–596. doi: 10.1016/j.bbagrm.2010.06.007. PubMed DOI PMC

Diestra E., Cayrol B., Arluison V., Risco C. Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane. PLoS ONE. 2009;4:e8301. doi: 10.1371/journal.pone.0008301. PubMed DOI PMC

Schiano C.A., Bellows L.E., Lathem W.W. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect. Immun. 2010;78:2034–2044. doi: 10.1128/IAI.01046-09. PubMed DOI PMC

Mellin J.R., McClure R., Lopez D., Green O., Reinhard B., Genco C. Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis. Microbiol. 2010;156:2316–2326. doi: 10.1099/mic.0.039040-0. PubMed DOI PMC

Sittka A., Pfeiffer V., Tedin K., Vogel J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 2007;63:193–217. doi: 10.1111/j.1365-2958.2006.05489.x. PubMed DOI PMC

Gottesman S., Storz G. Bacterial Small RNA Regulators: Versatile Roles and Rapidly Evolving Variations. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a003798. PubMed DOI PMC

Soper T.J., Woodson S.A. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA. 2008;14:1907–1917. doi: 10.1261/rna.1110608. PubMed DOI PMC

Pettijohn D.E. Histone-like Proteins and Bacterial Chromosome Structure. J. Biol. Chem. 1988;263:12793–12796. PubMed

Dillon S.C., Dorman C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 2010;8:185–195. doi: 10.1038/nrmicro2261. PubMed DOI

Bonnefoy E., Rouvière-Yaniv J. HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J. 1991;10:687–696. doi: 10.1002/j.1460-2075.1991.tb07998.x. PubMed DOI PMC

Stojkova P., Spidlova P., Stulik J. Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence. Front. Cell. Infect. Microbiol. 2019;9 doi: 10.3389/fcimb.2019.00159. PubMed DOI PMC

Bhowmick T., Ghosh S., Dixit K., Ganesan V., Ramagopal U.A., Dey D., Sarma S.P., Ramakumar S., Nagaraja V. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat. Commun. 2014;5:4124. doi: 10.1038/ncomms5124. PubMed DOI

Oberto J., Nabti S., Jooste V., Mignot H., Rouviere-Yaniv J. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE. 2009;4:e4367. doi: 10.1371/journal.pone.0004367. PubMed DOI PMC

Broyles S.S., Pettijohn D.E. Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J. Mol. Biol. 1986;187:47–60. doi: 10.1016/0022-2836(86)90405-5. PubMed DOI

Bonnefoy E., Rouvière-Yaniv J. HU, the major histone-like protein of E. coli, modulates the binding of IHF to oriC. EMBO J. 1992;11:4489–4496. doi: 10.1002/j.1460-2075.1992.tb05550.x. PubMed DOI PMC

Balandina A., Kamashev D., Rouviere-Yaniv J. The Bacterial Histone-like Protein HU Specifically Recognizes Similar Structures in All Nucleic Acids DNA, RNA, And Their Hybrids. J. Biol. Chem. 2002;277:27622–27628. doi: 10.1074/jbc.M201978200. PubMed DOI

Kamashev D., Rouviere-Yaniv J. The histone-like protein HU binds specifically to DNA recombination and repair intermediates. EMBO J. 2000;19:6527–6535. doi: 10.1093/emboj/19.23.6527. PubMed DOI PMC

Rouvière-Yaniv J., Yaniv M., Germond J.-E. E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA. Cell. 1979;17:265–274. doi: 10.1016/0092-8674(79)90152-1. PubMed DOI

Boubrik F., Rouviere-Yaniv J. Increased sensitivity to gamma irradiation in bacteria lacking protein HU. Proc. Natl. Acad. Sci. USA. 1995;92:3958–3962. doi: 10.1073/pnas.92.9.3958. PubMed DOI PMC

Lavoie B.D., Shaw G.S., Millner A., Chaconas G. Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell. 1996;85:761–771. doi: 10.1016/S0092-8674(00)81241-6. PubMed DOI

Chen C., Ghosh S., Grove A. Substrate specificity of Helicobacter pylori histone-like HU protein is determined by insufficient stabilization of DNA flexure points. Biochem. J. 2004;383:343–351. doi: 10.1042/BJ20040938. PubMed DOI PMC

Grove A., Saavedra T.C. The Role of Surface-Exposed Lysines in Wrapping DNA about the Bacterial Histone-Like Protein HU. Biochemistry. 2002;41:7597–7603. doi: 10.1021/bi016095e. PubMed DOI

Krylov A.S., Zasedateleva O.A., Prokopenko D.V., Rouviere-Yaniv J., Mirzabekov A.D. Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips. Nucleic Acids Res. 2001;29:2654–2660. doi: 10.1093/nar/29.12.2654. PubMed DOI PMC

Berger M., Gerganova V., Berger P., Rapiteanu R., Lisicovas V., Dobrindt U. Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli. Sci. Rep. 2016;6:31512. doi: 10.1038/srep31512. PubMed DOI PMC

Toyofuku M., Roschitzki B., Riedel K., Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J. Proteome Res. 2012;11:4906–4915. doi: 10.1021/pr300395j. PubMed DOI

Beckmann J.F., Markowski T.W., Witthuhn B.A., Fallon A.M. Detection of the wolbachia-encoded dna binding protein, hu beta, in mosquito gonads. Insect Biochem. Mol. Biol. 2013;43:272–279. doi: 10.1016/j.ibmb.2012.12.007. PubMed DOI PMC

Konecna K., Hernychova L., Reichelova M., Lenco J., Klimentova J., Stulik J., Macela A., Alefantis T., Delvecchio V.G. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent Francisella tularensis strains. Proteomics. 2010;10:4501–4511. doi: 10.1002/pmic.201000248. PubMed DOI

Milanez G.P., Werle C.H., Amorim M.R., Ribeiro R.A., Tibo L.H.S., Roque-Barreira M.C., Oliveira A.F., Brocchi M. HU-Lacking Mutants of Salmonella enterica Enteritidis Are Highly Attenuated and Can Induce Protection in Murine Model of Infection. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01780. PubMed DOI PMC

Dieppedale J., Gesbert G., Ramond E., Chhuon C., Dubail I., Dupuis M., Guerrera I.C., Charbit A. Possible Links Between Stress Defense and the Tricarboxylic Acid (TCA) Cycle in Francisella Pathogenesis. Mol. Cell Proteom. 2013;12:2278–2292. doi: 10.1074/mcp.M112.024794. PubMed DOI PMC

Porcheron G., Dozois C.M. Interplay between Iron Homeostasis and Virulence: Fur and RyhB as Major Regulators of Bacterial Pathogenicity. [(accessed on 22 June 2020)]; Available online: https://pubmed.ncbi.nlm.nih.gov/25888312/ PubMed

Troxell B., Hassan H.M. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell Infect. Microbiol. 2013;3 doi: 10.3389/fcimb.2013.00059. PubMed DOI PMC

Troxell B., Sikes M.L., Fink R.C., Vazquez-Torres A., Jones-Carson J., Hassan H.M. Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2011;193:497–505. doi: 10.1128/JB.00942-10. PubMed DOI PMC

Troxell B., Fink R.C., Porwollik S., McClelland M., Hassan H.M. The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: Identification of new Fur targets. BMC Microbiol. 2011;11:236. doi: 10.1186/1471-2180-11-236. PubMed DOI PMC

Dubrac S., Touati D. Fur Positive Regulation of Iron Superoxide Dismutase in Escherichia coli: Functional Analysis of thesodB Promoter. J. Bacteriol. 2000;182:3802–3808. doi: 10.1128/JB.182.13.3802-3808.2000. PubMed DOI PMC

Pan X., Tamilselvam B., Hansen E.J., Daefler S. Modulation of iron homeostasis in macrophages by bacterial intracellular pathogens. BMC Microbiol. 2010;10:64. doi: 10.1186/1471-2180-10-64. PubMed DOI PMC

Ramakrishnan G., Meeker A., Dragulev B. fslE is necessary for siderophore-mediated iron acquisition in Francisella tularensis Schu S4. J. Bacteriol. 2008;190:5353–5361. doi: 10.1128/JB.00181-08. PubMed DOI PMC

Molina-Henares A.J., Krell T., Guazzaroni M.E., Segura A., Ramos J.L. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 2006;30:157–186. doi: 10.1111/j.1574-6976.2005.00008.x. PubMed DOI

Harrison S.C., Aggarwal A.K. DNA recognition by proteins with the helix-turn-helix motif. Annu. Rev. Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. PubMed DOI

Gray C.G., Cowley S.C., Cheung K.K.M., Nano F.E. The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol. Lett. 2002;215:53–56. doi: 10.1111/j.1574-6968.2002.tb11369.x. PubMed DOI

Alam A., Golovliov I., Javed E., Sjöstedt A. ClpB mutants of Francisella tularensis subspecies holarctica and tularensis are defective for type VI secretion and intracellular replication. Sci. Rep. 2018;8:11324. doi: 10.1038/s41598-018-29745-4. PubMed DOI PMC

Eneslätt K., Golovliov I., Rydén P., Sjöstedt A. Vaccine-Mediated Mechanisms Controlling Replication of Francisella tularensis in Human Peripheral Blood Mononuclear Cells Using a Co-culture System. Front. Cell Infect. Microbiol. 2018;8:27. doi: 10.3389/fcimb.2018.00027. PubMed DOI PMC

Lindgren H., Eneslätt K., Golovliov I., Gelhaus C., Rydén P., Wu T., Sjöstedt A. Vaccine-Mediated Mechanisms Controlling Francisella tularensis SCHU S4 Growth in a Rat Co-Culture System. Pathogens. 2020;9:338. doi: 10.3390/pathogens9050338. PubMed DOI PMC

Stock A.M., Robinson V.L., Goudreau P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000;69:183–215. doi: 10.1146/annurev.biochem.69.1.183. PubMed DOI

van Hoek M.L., Hoang K.V., Gunn J.S. Two-Component Systems in Francisella Species. Front. Cell Infect. Microbiol. 2019;9:198. doi: 10.3389/fcimb.2019.00198. PubMed DOI PMC

Gao R., Stock A.M. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 2009;63:133–154. doi: 10.1146/annurev.micro.091208.073214. PubMed DOI PMC

Alkhuder K., Meibom K.L., Dubail I., Dupuis M., Charbit A. Identification of trkH, Encoding a Potassium Uptake Protein Required for Francisella tularensis Systemic Dissemination in Mice. PLoS ONE. 2010;5 doi: 10.1371/journal.pone.0008966. PubMed DOI PMC

Mohapatra N.P., Soni S., Bell B.L., Warren R., Ernst R.K., Muszynski A., Carlson R.W., Gunn J.S. Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect. Immun. 2007;75:3305–3314. doi: 10.1128/IAI.00351-07. PubMed DOI PMC

Sammons-Jackson W.L., McClelland K., Manch-Citron J.N., Metzger D.W., Bakshi C.S., Garcia E., Rasley A., Anderson B.E. Generation and characterization of an attenuated mutant in a response regulator gene of Francisella tularensis live vaccine strain (LVS) DNA Cell Biol. 2008;27:387–403. doi: 10.1089/dna.2007.0687. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...