Bacteriophage SPO1 protein Gp46 suppresses functions of HU protein in Francisella tularensis

. 2023 ; 14 () : 1330109. [epub] 20231208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38156016

The nucleoid-associated protein HU is a common bacterial transcription factor, whose role in pathogenesis and virulence has been described in many bacteria. Our recent studies showed that the HU protein is an indispensable virulence factor in the human pathogenic bacterium Francisella tularensis, a causative agent of tularemia disease, and that this protein can be a key target in tularemia treatment or vaccine development. Here, we show that Francisella HU protein is inhibited by Gp46, a protein of Bacillus subtilis bacteriophage SPO1. We predicted that Gp46 could occupy the F. tularensis HU protein DNA binding site, and subsequently confirmed the ability of Gp46 to abolish the DNA-binding capacity of HU protein. Next, we showed that the growth of Francisella wild-type strain expressing Gp46 in trans corresponded to that of a deletion mutant strain lacking the HU protein. Similarly, the efficiency of intracellular proliferation in mouse macrophages resembled that of the deletion mutant strain, but not that of the wild-type strain. These results, in combination with findings from a recent study on Gp46, enabled us to confirm that Gp46 could be a universal inhibitor of HU proteins among bacterial species.

Zobrazit více v PubMed

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., et al. . (2015). GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25. doi: 10.1016/j.softx.2015.06.001 DOI

Aki T., Choy H. E., Adhya S. (1996). Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells 1, 179–188. doi: 10.1046/j.1365-2443.1996.d01-236.x, PMID: PubMed DOI

Balandina A., Claret L., Hengge-Aronis R., Rouviere-Yaniv J. (2001). The Escherichia coli histone-like protein HU regulates rpoS translation. Mol. Microbiol. 39, 1069–1079. Available at: doi: 10.1046/j.1365-2958.2001.02305.x PubMed DOI

Bell B. L., Mohapatra N. P., Gunn J. S. (2010). Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect. Immun. 78, 2189–2198. Available at: doi: 10.1128/IAI.00021-10 PubMed DOI PMC

Bhowmick T., Ghosh S., Dixit K., Ganesan V., Ramagopal U. A., Dey D., et al. . (2014). Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat. Commun. 5:4124. Available at: doi: 10.1038/ncomms5124 PubMed DOI

Bonnefoy E., Rouvière-Yaniv J. (1992). HU, the major histone-like protein of E. coli, modulates the binding of IHF to oriC. EMBO J. 11, 4489–4496. doi: 10.1002/j.1460-2075.1992.tb05550.x, PMID: PubMed DOI PMC

Bönquist L., Lindgren H., Golovliov I., Guina T., Sjöstedt A. (2008). MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect. Immun. 76, 3502–3510. Available at: doi: 10.1128/IAI.00226-08, PMID: PubMed DOI PMC

Brotcke A., Weiss D. S., Kim C. C., Chain P., Malfatti S., Garcia E., et al. . (2006). Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect. Immun. 74, 6642–6655. Available at: doi: 10.1128/IAI.01250-06, PMID: PubMed DOI PMC

Celli J., Zahrt T.C. (2013) ‘Mechanisms of Francisella tularensis intracellular pathogenesis’, Cold Spring Harb. Perspect. Med., 3. Available at: doi: 10.1101/cshperspect.a010314 PMID: PubMed DOI PMC

Chamberlain R. E. (1965). Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl. Microbiol. 13, 232–235. doi: 10.1128/am.13.2.232-235.1965, PMID: PubMed DOI PMC

Charity J. C., Costante-Hamm M. M., Balon E. L., Boyd D. H., Rubin E. J., Dove S. L. (2007). Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog. 3:e84. Available at: doi: 10.1371/journal.ppat.0030084, PMID: PubMed DOI PMC

Checroun C., Wehrly T.D., Fischer E.R., Hayes S.F., Celli J. (2006) ‘Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication’, Proc. Natl. Acad. Sci. U. S. A. 103, 14578–14583. doi: 10.1073/pnas.0601838103, PMID: PubMed DOI PMC

Clemens D. L., Lee B.-Y., Horwitz M. A. (2018). The Francisella type VI secretion system. Front. Cell. Infect. Microbiol. 8:121. Available at: doi: 10.3389/fcimb.2018.00121, PMID: PubMed DOI PMC

Conforte V. P., Malamud F., Yaryura P. M., Toum Terrones L., Torres P. S., de Pino V., et al. . (2018). The histone-like protein HupB influences biofilm formation and virulence in Xanthomonas citri ssp. citri through the regulation of flagellar biosynthesis. Mol. Plant Pathol. 20(0). Available at:, 589–598. doi: 10.1111/mpp.12777, PMID: PubMed DOI PMC

Cuthbert B. J., Ross W., Rohlfing A. E., Dove S. L., Gourse R. L., Brennan R. G., et al. . (2017). Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev. 31, 1549–1560. Available at: doi: 10.1101/gad.303701.117 PubMed DOI PMC

Dennis D. T., Inglesby T. V., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., et al. . (2001). Tularemia as a biological weapon: medical and public health management. JAMA 285, 2763–2773. doi: 10.1001/jama.285.21.2763 PubMed DOI

Ferrándiz M.-J., Carreño D., Ayora S., de la Campa A. G. (2018). HU of Streptococcus pneumoniae is essential for the preservation of DNA supercoiling. Front. Microbiol. 9:493. doi: 10.3389/fmicb.2018.00493, PMID: PubMed DOI PMC

Grosdidier A., Zoete V., Michielin O. (2011). Fast docking using the CHARMM force field with EADock DSS. J. Comput. Chem. 32, 2149–2159. Available at: doi: 10.1002/jcc.21797, PMID: PubMed DOI

Guan Z., Wang Y., Gao L., Zhang W., Lu X. (2018). Effects of the histone-like protein HU on cellulose degradation and biofilm formation of Cytophaga hutchinsonii. Appl. Microbiol. Biotechnol. 102, 6593–6611. Available at: doi: 10.1007/s00253-018-9071-9 PubMed DOI

Lauriano C. M., Barker J. R., Yoon S. S., Nano F. E., Arulanandam B. P., Hassett D. J., et al. . (2004). MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc. Natl. Acad. Sci. U. S. A. 101, 101, 4246–4249. doi: 10.1073/pnas.0307690101, PMID: PubMed DOI PMC

Lemkul J. A. (2019). From proteins to perturbed Hamiltonians: a suite of tutorials for the GROMACS-2018 molecular simulation package [article v1.0]. Living J Comp Molecular Sci 1:5068. doi: 10.33011/livecoms.1.1.5068 DOI

Mangan M. W., Lucchini S., Ó Cróinín T., Fitzgerald S., Hinton J. C. D., Dorman C. J. (2011). Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar typhimurium. Microbiology 157, 1075–1087. Available at: doi: 10.1099/mic.0.046359-0, PMID: PubMed DOI

McCoy G. W., Chapin C. W. (1912). Further observations on a plague-like disease of rodents with a preliminary note on the causative agent, bacterium tularense. J. Infect. Dis. 10, 61–72. doi: 10.1093/infdis/10.1.61 DOI

Mohapatra N. P., Soni S., Bell B. L., Warren R., Ernst R. K., Muszynski A., et al. . (2007). Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect. Immun. 75, 3305–3314. Available at: doi: 10.1128/IAI.00351-07, PMID: PubMed DOI PMC

Oberto J., Nabti S., Jooste V., Mignot H., Rouviere-Yaniv J. (2009). The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS One 4:e4367. Available at: doi: 10.1371/journal.pone.0004367, PMID: PubMed DOI PMC

Pavlik P., Jost P., Rehulka P., Vozandychova V., Link M., Spidlova P. (2023). Epigallocatechin gallate inhibits Francisella tularensis growth and suppresses the function of DNA-binding protein HU. Microb. Pathog. 176:105999. Available at: doi: 10.1016/j.micpath.2023.105999, PMID: PubMed DOI

Pavlik P., Spidlova P. (2022). Arginine 58 is indispensable for proper function of the Francisella tularensis subsp. holarctica FSC200 HU protein, and its substitution alters virulence and mediates immunity against wild-type strain. Virulence. Available at: doi:10.1080/21505594.2022.2132729 13, 1790–1809. doi: 10.1080/21505594.2022.2132729 PubMed DOI PMC

Phan N. Q., Uebanso T., Shimohata T., Nakahashi M., Mawatari K., Takahashi A. (2015). DNA-binding protein HU coordinates pathogenicity in Vibrio parahaemolyticus. J. Bacteriol. 197, 2958–2964. doi: 10.1128/JB.00306-15, PMID: PubMed DOI PMC

Preobrajenskaya, Boullard A., Boubrik F., Schnarr M., Rouvière-Yaniv J. (1994). The protein HU can displace the LexA repressor from its DNA-binding sites. Mol. Microbiol. 13, 459–467. doi: 10.1111/j.1365-2958.1994.tb00440.x PubMed DOI

Priyadarshini R., Cugini C., Arndt A., Chen T., Tjokro N. O., Goodman S. D., et al. . (2013). The nucleoid-associated protein HUβ affects global gene expression in Porphyromonas gingivalis. Microbiology 159, 219–229. Available at: doi: 10.1099/mic.0.061002-0, PMID: PubMed DOI PMC

Ramsey K. M., Dove S. L. (2016). A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor. Mol. Microbiol. 101, 688–700. doi: 10.1111/mmi.13418, PMID: PubMed DOI PMC

Ramsey K.M., Osborne M.L., Vvedenskaya I.O., Su C., Nickels B.E., Dove S.L. (2015) ‘Ubiquitous promoter-localization of essential virulence regulators in Francisella tularensis’, PLoS Pathog. 11:1004793. doi: 10.1371/journal.ppat.1004793 PubMed DOI PMC

Soteras Gutiérrez I., Lin F. Y., Vanommeslaeghe K., Lemkul J. A., Armacost K. A., Brooks C. L., III, et al. . (2016). Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand–protein interactions. Bioorg. Med. Chem. 24, 4812–4825. Available at: doi: 10.1016/j.bmc.2016.06.034, PMID: PubMed DOI PMC

Spidlova P., Stojkova P., Dankova V., Senitkova I., Santic M., Pinkas D., et al. . (2018). Francisella tularensis D-ala D-ala carboxypeptidase DacD is involved in intracellular replication and it is necessary for bacterial Cell Wall integrity. Front. Cell. Infect. Microbiol. 8:111. doi: 10.3389/fcimb.2018.00111 PubMed DOI PMC

Spidlova P., Stojkova P., Sjöstedt A., Stulik J. (2020). Control of Francisella tularensis virulence at gene level: network of transcription factors. Microorganisms 8:1622. Available at: doi: 10.3390/microorganisms8101622, PMID: PubMed DOI PMC

Spidlova P., Stulik J. (2017). Francisella tularensis type VI secretion system comes of age. Virulence 8, 628–631. Available at: doi: 10.1080/21505594.2016.1278336, PMID: PubMed DOI PMC

Stojkova P., Spidlova P., Lenco J., Rehulkova H., Kratka L., Stulik J. (2018). HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence 9, 754–770. Available at: doi: 10.1080/21505594.2018.1441588, PMID: PubMed DOI PMC

Stojkova P., Spidlova P., Stulik J. (2019) ‘Nucleoid-associated protein HU: a Lilliputian in gene regulation of bacterial virulence’, Front. Cell. Infect. Microbiol. 9:159. doi: 10.3389/fcimb.2019.00159 PubMed DOI PMC

van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718. Available at: doi: 10.1002/jcc.20291, PMID: PubMed DOI

Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., et al. . (2010). CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690. Available at: doi: 10.1002/jcc.21367 PubMed DOI PMC

Vanommeslaeghe K., MacKerell A. D., Jr. (2012). Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154. Available at: doi: 10.1021/ci300363c, PMID: PubMed DOI PMC

Vanommeslaeghe K., Raman E. P., MacKerell A. D., Jr. (2012). Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168. Available at: doi: 10.1021/ci3003649, PMID: PubMed DOI PMC

Wang J., Cieplak P., Kollman P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049–1074. doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F DOI

Yan Y., Tao H., He J., Huang S. Y. (2020). The HDOCK server for integrated protein–protein docking. Nat. Protoc. 15, 1829–1852. Available at: doi: 10.1038/s41596-020-0312-x, PMID: PubMed DOI

Zhang P., Zhao X., Wang Y., du K., Wang Z., Yu J., et al. . (2022). Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins. Proc. Natl. Acad. Sci. 119:e2116278119. Available at: doi: 10.1073/pnas.2116278119, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...