HU protein is involved in intracellular growth and full virulence of Francisella tularensis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29473442
PubMed Central
PMC5955460
DOI
10.1080/21505594.2018.1441588
Knihovny.cz E-zdroje
- Klíčová slova
- DNA binding protein, FPI, Francisella, HU protein, nucleoid-associated protein, virulence,
- MeSH
- bakteriální proteiny metabolismus MeSH
- delece genu MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA metabolismus MeSH
- faktory virulence metabolismus MeSH
- Francisella tularensis růst a vývoj fyziologie MeSH
- fyziologický stres MeSH
- oxidační stres MeSH
- stanovení celkové genové exprese MeSH
- vazba proteinů MeSH
- virulence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA vazebné proteiny MeSH
- DNA MeSH
- faktory virulence MeSH
- histone-like protein HU, bacteria MeSH Prohlížeč
The nucleoid-associated HU proteins are small abundant DNA-binding proteins in bacterial cell which play an important role in the initiation of DNA replication, cell division, SOS response, control of gene expression and recombination. HU proteins bind to double stranded DNA non-specifically, but they exhibit high affinity to abnormal DNA structures as four-way junctions, gaps or nicks, which are generated during DNA damage. In many pathogens HU proteins regulate expression of genes involved in metabolism and virulence. Here, we show that the Francisella tularensis subsp. holarctica gene locus FTS_0886 codes for functional HU protein which is essential for full Francisella virulence and its resistance to oxidative stress. Further, our results demonstrate that the recombinant FtHU protein binds to double stranded DNA and protects it against free hydroxyl radicals generated via Fenton's reaction. Eventually, using an iTRAQ approach we identified proteins levels of which are affected by the deletion of hupB, among them for example Francisella pathogenicity island (FPI) proteins. The pleiotropic role of HU protein classifies it as a potential target for the development of therapeutics against tularemia.
Zobrazit více v PubMed
Tärnvik A. Nature of Protective Immunity to PubMed DOI
McDonald MK, Cowley SC, Nano FE. Temperature-sensitive lesions in the PubMed DOI PMC
Mdluli KE, Anthony LS, Baron GS, et al.. Serum-sensitive mutation of PubMed DOI
Okan NA, Chalabaev S, Kim T-H, et al.. Kdo Hydrolase Is Required for PubMed DOI PMC
Hood AM. Virulence factors of PubMed DOI PMC
Nano FE, Zhang N, Cowley SC, et al.. A PubMed DOI PMC
Lenco J, Link M, Tambor V, et al.. iTRAQ quantitative analysis of PubMed DOI
Pettijohn DE. Histone-like Proteins and Bacterial Chromosome Structure. J Biol Chem. 1988;263: PubMed
Azam TA, Ishihama A. Twelve species of the nucleoid-associated protein from PubMed DOI
Bhowmick T, Ghosh S, Dixit K, et al.. Targeting PubMed DOI
Mangan MW, Lucchini S, O Croinin T, et al.. Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in PubMed DOI
Priyadarshini R, Cugini C, Arndt A, et al.. The nucleoid-associated protein HUβ affects global gene expression in PubMed DOI PMC
Bonnefoy E, Rouvière-Yaniv J. HU, the major histone-like protein of PubMed PMC
Oberto J, Nabti S, Jooste V, et al.. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PloS One. 2009;4:e4367. doi: 10.1371/journal.pone.0004367 PubMed DOI PMC
Preobrajenskaya, et al.. The protein HU can displace the LexA repressor from its DNA-binding sites. Mol Microbiol. 1994;13:459–467. doi: 10.1111/j.1365-2958.1994.tb00440.x PubMed DOI
Aki T, Choy HE, Adhya S. Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells Devoted Mol Cell Mech. 1996;1:179–188. doi: 10.1046/j.1365-2443.1996.d01-236.x PubMed DOI
Beckamnn JF, Markowski TW, Witthuhn BA, et al.. Detection of the PubMed DOI PMC
Toyofuku M, Roschitzki B, Riedel K, et al.. Identification of proteins associated with the PubMed DOI
Dias AA, Raze D, Lima CS de, et al.. PubMed DOI
Konecna K, Hernychova L, Reichelova M, et al.. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent PubMed DOI
Meibom KL, Forslund A-L, Kuoppa K, et al.. Hfq, a novel pleiotropic regulator of virulence-associated genes in PubMed DOI PMC
Lenco J, Tambor V, Link M, et al.. Changes in proteome of the PubMed DOI
Dieppedale J, Gesbert G, Ramond E, et al.. Possible Links Between Stress Defense and the Tricarboxylic Acid (TCA) Cycle in PubMed DOI PMC
Dankova V, Balonova L, Link M, et al.. Inactivation of PubMed DOI
Thomas RM, Titball RW, Oyston PCF, et al.. The Immunologically Distinct O Antigens from PubMed DOI PMC
Brotcke A, Weiss DS, Kim CC, et al.. Identification of MglA-regulated genes reveals novel virulence factors in PubMed DOI PMC
Charity JC, Costante-Hamm MM, Balon EL, et al.. Twin RNA polymerase-associated proteins control virulence gene expression in PubMed DOI PMC
Lauriano CM, Barker JR, Yoon S-S, et al.. MglA regulates transcription of virulence factors necessary for PubMed DOI PMC
Brotcke A, Monack DM. Identification of PubMed DOI PMC
Ramsey KM, Osborne ML, Vvedenskaya IO, et al. Ubiquitous Promoter-Localization of Essential Virulence Regulators in PubMed DOI PMC
Rohlfing AE, Dove SL. Coordinate control of virulence gene expression in PubMed DOI PMC
Bell BL, Mohapatra NP, Gunn JS. Regulation of virulence gene transcripts by the PubMed DOI PMC
Mohapatra NP, Soni S, Bell BL, et al.. Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes Infect Immun. 2007;75:3305–3314. PubMed PMC
Ramsey KM, Dove SL. A response regulator promotes PubMed DOI PMC
Charity JC, Blalock LT, Costante-Hamm MM, et al.. Small molecule control of virulence gene expression in PubMed DOI PMC
Cuthbert BJ, Ross W, Rohlfing AE, et al.. Dissection of the molecular circuitry controlling virulence in PubMed DOI PMC
Enright HU, Miller WJ, Hebbel RP. Nucleosomal histone protein protects DNA from iron-mediated damage. Nucleic Acids Res. 1992;20:3341–3346. doi: 10.1093/nar/20.13.3341 PubMed DOI PMC
Kornberg RD, Lorch Y. Chromatin structure and transcription. Annu Rev Cell Biol. 1992;8:563–587. doi: 10.1146/annurev.cb.08.110192.003023 PubMed DOI
Colangeli R, Haq A, Arcus VL, et al.. The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A. 2009;106:4414–4418. doi: 10.1073/pnas.0810126106 PubMed DOI PMC
Wang G, Lo LF, Maier RJ. A histone-like protein of PubMed DOI PMC
Enany S, Yoshida Y, Tateishi Y, et al.. Mycobacterial DNA-binding protein 1 is critical for long term survival of PubMed DOI PMC
Kumar JK, Tabor S, Richardson CC. Proteomic analysis of thioredoxin-targeted proteins in PubMed DOI PMC
Zeller T, Klug G. Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften. 2006;93:259–266. doi: 10.1007/s00114-006-0106-1 PubMed DOI
Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2011;80:580–583. doi: 10.1111/j.1365-2958.2011.07612.x PubMed DOI PMC
Lindgren H, Golovliov I, Baranov V, et al.. Factors affecting the escape of PubMed DOI
Barker JR, Chong A, Wehrly TD, et al.. The PubMed DOI PMC
Bröms JE, Sjöstedt A, Lavander M. The Role of the PubMed DOI PMC
de Bruin OM, Duplantis BN, Ludu JS, et al.. The biochemical properties of the PubMed DOI PMC
Ellis J, Oyston PCF, Green M, et al.. Tularemia. Clin Microbiol Rev. 2002;15:631–646. doi: 10.1128/CMR.15.4.631-646.2002 PubMed DOI PMC
Sandström G, Löfgren S, Tärnvik A. A capsule-deficient mutant of PubMed PMC
Vinogradov E, Perry MB, Conlan JW. Structural analysis of PubMed DOI
Sandström G, Sjöstedt A, Johansson T, et al.. Immunogenicity and toxicity of lipopolysaccharide from PubMed DOI
Raynaud C, Meibom KL, Lety M-A, et al.. Role of the wbt locus of PubMed DOI PMC
Rasmussen JA, Fletcher JR, Long ME, et al.. Characterization of PubMed DOI PMC
Twine SM, Vinogradov E, Lindgren H, et al.. Roles for PubMed DOI PMC
Gupta M, Sajid A, Sharma K, et al.. HupB, a Nucleoid-Associated Protein of PubMed DOI PMC
Ghosh S, Padmanabhan B, Anand C, et al.. Lysine acetylation of the PubMed DOI
Chamberlain RE. Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol. 1965;13:232–235. PubMed PMC
Rodriguez SA, Yu J-J, Davis G, et al.. Targeted inactivation of PubMed DOI PMC
Franc V, Řehulka P, Medda R, et al.. Analysis of the glycosylation pattern of plant copper amine oxidases by MALDI-TOF/TOF MS coupled to a manual chromatographic separation of glycans and glycopeptides. Electrophoresis. 2013;34:2357–2367. doi: 10.1002/elps.201200622 PubMed DOI
Kupčík R, Zelená M, Řehulka P, et al.. Selective isolation of hydrophobin SC3 by solid-phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis. J Sep Sci. 2016;39:717–724. doi: 10.1002/jssc.201500912 PubMed DOI
MacLean B, Tomazela DM, Shulman N, et al.. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinforma Oxf Engl. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054 PubMed DOI PMC
Peterson A, Russell JD, Bailey DJ, et al.. Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics. Mol Amp Cell Proteomics. 2012;11:1475–1488. doi: 10.1074/mcp.O112.020131 PubMed DOI PMC
Westphal O, Westphal O, Jann K. Bacterial lipopolysaccharide-extraction with phenol water and further application of procedure 1965;5:83–91; Available from: https://www.scienceopen.com/document?vid=6865c59b-264b-4993-ae31-5cdfbc50571a
Balonova L, Mann BF, Cerveny L, et al.. Characterization of Protein Glycosylation in PubMed DOI PMC
Simon R, Priefer U, Pühler A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotechnol. 1983;1:784–791. doi: 10.1038/nbt1183-784 DOI
Milton DL, O'Toole R, Horstedt P, et al.. Flagellin A is essential for the virulence of PubMed DOI PMC
Bönquist L, Lindgren H, Golovliov I, et al.. MglA and Igl proteins contribute to the modulation of PubMed DOI PMC
Breaking the cellular defense: the role of autophagy evasion in Francisella virulence
Bacteriophage SPO1 protein Gp46 suppresses functions of HU protein in Francisella tularensis
Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors
Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence