HU protein is involved in intracellular growth and full virulence of Francisella tularensis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29473442
PubMed Central
PMC5955460
DOI
10.1080/21505594.2018.1441588
Knihovny.cz E-zdroje
- Klíčová slova
- DNA binding protein, FPI, Francisella, HU protein, nucleoid-associated protein, virulence,
- MeSH
- bakteriální proteiny metabolismus MeSH
- delece genu MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA metabolismus MeSH
- faktory virulence metabolismus MeSH
- Francisella tularensis růst a vývoj fyziologie MeSH
- fyziologický stres MeSH
- oxidační stres MeSH
- stanovení celkové genové exprese MeSH
- vazba proteinů MeSH
- virulence MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA vazebné proteiny MeSH
- DNA MeSH
- faktory virulence MeSH
- histone-like protein HU, bacteria MeSH Prohlížeč
The nucleoid-associated HU proteins are small abundant DNA-binding proteins in bacterial cell which play an important role in the initiation of DNA replication, cell division, SOS response, control of gene expression and recombination. HU proteins bind to double stranded DNA non-specifically, but they exhibit high affinity to abnormal DNA structures as four-way junctions, gaps or nicks, which are generated during DNA damage. In many pathogens HU proteins regulate expression of genes involved in metabolism and virulence. Here, we show that the Francisella tularensis subsp. holarctica gene locus FTS_0886 codes for functional HU protein which is essential for full Francisella virulence and its resistance to oxidative stress. Further, our results demonstrate that the recombinant FtHU protein binds to double stranded DNA and protects it against free hydroxyl radicals generated via Fenton's reaction. Eventually, using an iTRAQ approach we identified proteins levels of which are affected by the deletion of hupB, among them for example Francisella pathogenicity island (FPI) proteins. The pleiotropic role of HU protein classifies it as a potential target for the development of therapeutics against tularemia.
Zobrazit více v PubMed
Tärnvik A. Nature of Protective Immunity to Francisella tularensis. Rev Infect Dis. 1989;11:440–451. doi:10.1093/clinids/11.3.440 PubMed DOI
McDonald MK, Cowley SC, Nano FE. Temperature-sensitive lesions in the Francisella novicida valA gene cloned into an Escherichia coli msbA lpxK mutant affecting deoxycholate resistance and lipopolysaccharide assembly at the restrictive temperature. J Bacteriol. 1997;179:7638–7643. doi:10.1128/jb.179.24.7638-7643.1997 PubMed DOI PMC
Mdluli KE, Anthony LS, Baron GS, et al.. Serum-sensitive mutation of Francisella novicida: association with an ABC transporter gene. Microbiol Read Engl. 1994;140(Pt 12):3309–3318. doi:10.1099/13500872-140-12-3309 PubMed DOI
Okan NA, Chalabaev S, Kim T-H, et al.. Kdo Hydrolase Is Required for Francisella tularensis Virulence and Evasion of TLR2-Mediated Innate Immunity. ;4(1):e00638–12. doi:10.1128/mBio.00638-12 PubMed DOI PMC
Hood AM. Virulence factors of Francisella tularensis. J Hyg (Lond). 1977;79:47–60. doi:10.1017/S0022172400052840 PubMed DOI PMC
Nano FE, Zhang N, Cowley SC, et al.. A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol. 2004;186:6430–6436. doi:10.1128/JB.186.19.6430-6436.2004 PubMed DOI PMC
Lenco J, Link M, Tambor V, et al.. iTRAQ quantitative analysis of Francisella tularensis ssp. holarctica live vaccine strain and Francisella tularensis ssp. tularensis SCHU S4 response to different temperatures and stationary phases of growth. Proteomics. 2009;9:2875–2882. doi:10.1002/pmic.200700820 PubMed DOI
Pettijohn DE. Histone-like Proteins and Bacterial Chromosome Structure. J Biol Chem. 1988;263: PubMed
Azam TA, Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem. 1999;274:33105–33113. doi:10.1074/jbc.274.46.33105 PubMed DOI
Bhowmick T, Ghosh S, Dixit K, et al.. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat Commun. 2014;5:4124. doi:10.1038/ncomms5124 PubMed DOI
Mangan MW, Lucchini S, O Croinin T, et al.. Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology. 2011;157:1075–1087. doi:10.1099/mic.0.046359-0 PubMed DOI
Priyadarshini R, Cugini C, Arndt A, et al.. The nucleoid-associated protein HUβ affects global gene expression in Porphyromonas gingivalis. Microbiology. 2013;159:219–229. doi:10.1099/mic.0.061002-0 PubMed DOI PMC
Bonnefoy E, Rouvière-Yaniv J. HU, the major histone-like protein of E. coli, modulates the binding of IHF to oriC EMBO J. 1992;11:4489–4496. PubMed PMC
Oberto J, Nabti S, Jooste V, et al.. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PloS One. 2009;4:e4367. doi:10.1371/journal.pone.0004367 PubMed DOI PMC
Preobrajenskaya, et al.. The protein HU can displace the LexA repressor from its DNA-binding sites. Mol Microbiol. 1994;13:459–467. doi:10.1111/j.1365-2958.1994.tb00440.x PubMed DOI
Aki T, Choy HE, Adhya S. Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells Devoted Mol Cell Mech. 1996;1:179–188. doi:10.1046/j.1365-2443.1996.d01-236.x PubMed DOI
Beckamnn JF, Markowski TW, Witthuhn BA, et al.. Detection of the Wolbachia-encoded DNA binding protein, HU beta, in mosquito gonads. Insect Biochem Mol Biol. 2013;43:272–279. doi:10.1016/j.ibmb.2012.12.007 PubMed DOI PMC
Toyofuku M, Roschitzki B, Riedel K, et al.. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res. 2012;11:4906–4915. doi:10.1021/pr300395j PubMed DOI
Dias AA, Raze D, Lima CS de, et al.. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence. Mem Inst Oswaldo Cruz. 2012;107:174–182. doi:10.1590/S0074-02762012000900025 PubMed DOI
Konecna K, Hernychova L, Reichelova M, et al.. Comparative proteomic profiling of culture filtrate proteins of less and highly virulent Francisella tularensis strains. Proteomics. 2010;10:4501–4511. doi:10.1002/pmic.201000248 PubMed DOI
Meibom KL, Forslund A-L, Kuoppa K, et al.. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun. 2009;77:1866–1880. doi:10.1128/IAI.01496-08 PubMed DOI PMC
Lenco J, Tambor V, Link M, et al.. Changes in proteome of the Δhfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype. Proteomics. 2014;14:2400–2409. doi:10.1002/pmic.201400198 PubMed DOI
Dieppedale J, Gesbert G, Ramond E, et al.. Possible Links Between Stress Defense and the Tricarboxylic Acid (TCA) Cycle in Francisella Pathogenesis. Mol Cell Proteomics MCP. 2013;12:2278–2292. doi:10.1074/mcp.M112.024794 PubMed DOI PMC
Dankova V, Balonova L, Link M, et al.. Inactivation of Francisella tularensis Gene Encoding Putative ABC Transporter Has a Pleiotropic Effect upon Production of Various Glycoconjugates. J Proteome Res. 2016;15:510–524. doi:10.1021/acs.jproteome.5b00864 PubMed DOI
Thomas RM, Titball RW, Oyston PCF, et al.. The Immunologically Distinct O Antigens from Francisella tularensis Subspecies tularensis and Francisella novicida Are both Virulence Determinants and Protective Antigens. Infect Immun. 2007;75:371–378. doi:10.1128/IAI.01241-06 PubMed DOI PMC
Brotcke A, Weiss DS, Kim CC, et al.. Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun. 2006;74:6642–6655. doi:10.1128/IAI.01250-06 PubMed DOI PMC
Charity JC, Costante-Hamm MM, Balon EL, et al.. Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog. 2007;3:e84. doi:10.1371/journal.ppat.0030084 PubMed DOI PMC
Lauriano CM, Barker JR, Yoon S-S, et al.. MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A. 2004;101:4246–4249. doi:10.1073/pnas.0307690101 PubMed DOI PMC
Brotcke A, Monack DM. Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun. 2008;76:3473–3480. doi:10.1128/IAI.00430-08 PubMed DOI PMC
Ramsey KM, Osborne ML, Vvedenskaya IO, et al. Ubiquitous Promoter-Localization of Essential Virulence Regulators in Francisella tularensis PLoS Pathog. 2015;11(4):e1004793. doi:10.1371/journal.ppat.1004793 PubMed DOI PMC
Rohlfing AE, Dove SL. Coordinate control of virulence gene expression in Francisella tularensis involves direct interaction between key regulators. J Bacteriol. 2014;196:3516–3526. doi:10.1128/JB.01700-14 PubMed DOI PMC
Bell BL, Mohapatra NP, Gunn JS. Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun. 2010;78:2189–2198. doi:10.1128/IAI.00021-10 PubMed DOI PMC
Mohapatra NP, Soni S, Bell BL, et al.. Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes Infect Immun. 2007;75:3305–3314. PubMed PMC
Ramsey KM, Dove SL. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor. Mol Microbiol. 2016;101:688–700. doi:10.1111/mmi.13418 PubMed DOI PMC
Charity JC, Blalock LT, Costante-Hamm MM, et al.. Small molecule control of virulence gene expression in Francisella tularensis. PLoS Pathog. 2009;5:e1000641. doi:10.1371/journal.ppat.1000641 PubMed DOI PMC
Cuthbert BJ, Ross W, Rohlfing AE, et al.. Dissection of the molecular circuitry controlling virulence in Francisella tularensis. Genes Dev. 2017;31:1549–1560. doi:10.1101/gad.303701.117 PubMed DOI PMC
Enright HU, Miller WJ, Hebbel RP. Nucleosomal histone protein protects DNA from iron-mediated damage. Nucleic Acids Res. 1992;20:3341–3346. doi:10.1093/nar/20.13.3341 PubMed DOI PMC
Kornberg RD, Lorch Y. Chromatin structure and transcription. Annu Rev Cell Biol. 1992;8:563–587. doi:10.1146/annurev.cb.08.110192.003023 PubMed DOI
Colangeli R, Haq A, Arcus VL, et al.. The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A. 2009;106:4414–4418. doi:10.1073/pnas.0810126106 PubMed DOI PMC
Wang G, Lo LF, Maier RJ. A histone-like protein of Helicobacter pylori protects DNA from stress damage and aids host colonization. DNA Repair. 2012;11:733–740. doi:10.1016/j.dnarep.2012.06.006 PubMed DOI PMC
Enany S, Yoshida Y, Tateishi Y, et al.. Mycobacterial DNA-binding protein 1 is critical for long term survival of Mycobacterium smegmatis and simultaneously coordinates cellular functions. Sci Rep 2017;7:6810. doi:10.1038/s41598-017-06480-w. PubMed DOI PMC
Kumar JK, Tabor S, Richardson CC. Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci U S A. 2004;101:3759–3764. doi:10.1073/pnas.0308701101 PubMed DOI PMC
Zeller T, Klug G. Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften. 2006;93:259–266. doi:10.1007/s00114-006-0106-1 PubMed DOI
Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2011;80:580–583. doi:10.1111/j.1365-2958.2011.07612.x PubMed DOI PMC
Lindgren H, Golovliov I, Baranov V, et al.. Factors affecting the escape of Francisella tularensis from the phagolysosome. J Med Microbiol. 2004;53:953–958. doi:10.1099/jmm.0.45685-0 PubMed DOI
Barker JR, Chong A, Wehrly TD, et al.. The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol. 2009;74:1459–1470. doi:10.1111/j.1365-2958.2009.06947.x PubMed DOI PMC
Bröms JE, Sjöstedt A, Lavander M. The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol 2010;1:136. doi:10.3389/fmicb.2010.00136. PubMed DOI PMC
de Bruin OM, Duplantis BN, Ludu JS, et al.. The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiol Read Engl. 2011;157:3483–3491. doi:10.1099/mic.0.052308-0 PubMed DOI PMC
Ellis J, Oyston PCF, Green M, et al.. Tularemia. Clin Microbiol Rev. 2002;15:631–646. doi:10.1128/CMR.15.4.631-646.2002 PubMed DOI PMC
Sandström G, Löfgren S, Tärnvik A. A capsule-deficient mutant of Francisella tularensis LVS exhibits enhanced sensitivity to killing by serum but diminished sensitivity to killing by polymorphonuclear leukocytes. Infect Immun. 1988;56:1194–1202. PubMed PMC
Vinogradov E, Perry MB, Conlan JW. Structural analysis of Francisella tularensis lipopolysaccharide. Eur J Biochem. 2002;269:6112–6118. doi:10.1046/j.1432-1033.2002.03321.x PubMed DOI
Sandström G, Sjöstedt A, Johansson T, et al.. Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol Immunol. 1992;5:201–210. doi:10.1111/j.1574-6968.1992.tb05902.x PubMed DOI
Raynaud C, Meibom KL, Lety M-A, et al.. Role of the wbt locus of Francisella tularensis in lipopolysaccharide O-antigen biogenesis and pathogenicity. Infect Immun. 2007;75:536–541. doi:10.1128/IAI.01429-06 PubMed DOI PMC
Rasmussen JA, Fletcher JR, Long ME, et al.. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies. Front Microbiol. 2015;6:338. doi:10.3389/fmicb.2015.00338 PubMed DOI PMC
Twine SM, Vinogradov E, Lindgren H, et al.. Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis Strain SCHU S4. Pathog Basel Switz. 2012;1:12–29. doi:10.3390/pathogens1010012 PubMed DOI PMC
Gupta M, Sajid A, Sharma K, et al.. HupB, a Nucleoid-Associated Protein of Mycobacterium tuberculosis, Is Modified by Serine/Threonine Protein Kinases In Vivo. J Bacteriol. 2014;196:2646–2657. doi:10.1128/JB.01625-14 PubMed DOI PMC
Ghosh S, Padmanabhan B, Anand C, et al.. Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization. Mol Microbiol. 2016;100:577–588. doi:10.1111/mmi.13339 PubMed DOI
Chamberlain RE. Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol. 1965;13:232–235. PubMed PMC
Rodriguez SA, Yu J-J, Davis G, et al.. Targeted inactivation of Francisella tularensis genes by group II introns. Appl Environ Microbiol. 2008;74:2619–2626. doi:10.1128/AEM.02905-07 PubMed DOI PMC
Franc V, Řehulka P, Medda R, et al.. Analysis of the glycosylation pattern of plant copper amine oxidases by MALDI-TOF/TOF MS coupled to a manual chromatographic separation of glycans and glycopeptides. Electrophoresis. 2013;34:2357–2367. doi:10.1002/elps.201200622 PubMed DOI
Kupčík R, Zelená M, Řehulka P, et al.. Selective isolation of hydrophobin SC3 by solid-phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis. J Sep Sci. 2016;39:717–724. doi:10.1002/jssc.201500912 PubMed DOI
MacLean B, Tomazela DM, Shulman N, et al.. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinforma Oxf Engl. 2010;26:966–968. doi:10.1093/bioinformatics/btq054 PubMed DOI PMC
Peterson A, Russell JD, Bailey DJ, et al.. Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics. Mol Amp Cell Proteomics. 2012;11:1475–1488. doi:10.1074/mcp.O112.020131 PubMed DOI PMC
Westphal O, Westphal O, Jann K. Bacterial lipopolysaccharide-extraction with phenol water and further application of procedure 1965;5:83–91; Available from: https://www.scienceopen.com/document?vid=6865c59b-264b-4993-ae31-5cdfbc50571a
Balonova L, Mann BF, Cerveny L, et al.. Characterization of Protein Glycosylation in Francisella tularensis subsp. holarctica. Mol Cell Proteomics MCP. 2012;11(7):M111.015016. doi:10.1074/mcp.M111.015016. PubMed DOI PMC
Simon R, Priefer U, Pühler A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotechnol. 1983;1:784–791. doi:10.1038/nbt1183-784 DOI
Milton DL, O'Toole R, Horstedt P, et al.. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996;178:1310–1319. doi:10.1128/jb.178.5.1310-1319.1996 PubMed DOI PMC
Bönquist L, Lindgren H, Golovliov I, et al.. MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun. 2008;76:3502–3510. doi:10.1128/IAI.00226-08 PubMed DOI PMC
Breaking the cellular defense: the role of autophagy evasion in Francisella virulence
Bacteriophage SPO1 protein Gp46 suppresses functions of HU protein in Francisella tularensis
Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors
Nucleoid-Associated Protein HU: A Lilliputian in Gene Regulation of Bacterial Virulence