Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36081771
PubMed Central
PMC9445418
DOI
10.3389/fcimb.2022.999737
Knihovny.cz E-zdroje
- Klíčová slova
- HU protein, bacterial secretion, histone-like protein, host-pathogen interaction, nucleoid-associated protein, virulence,
- MeSH
- bakteriální proteiny * genetika MeSH
- DNA bakterií metabolismus MeSH
- DNA vazebné proteiny * metabolismus MeSH
- DNA chemie MeSH
- faktory virulence MeSH
- interakce hostitele a patogenu MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- DNA bakterií MeSH
- DNA vazebné proteiny * MeSH
- DNA MeSH
- faktory virulence MeSH
HU protein is a member of nucleoid-associated proteins (NAPs) and is an important regulator of bacterial virulence, pathogenesis and survival. NAPs are mainly DNA structuring proteins that influence several molecular processes by binding the DNA. HU´s indispensable role in DNA-related processes in bacteria was described. HU protein is a necessary bacterial transcription factor and is considered to be a virulence determinant as well. Less is known about its direct role in host-pathogen interactions. The latest studies suggest that HU protein may be secreted outside bacteria and be a part of the extracellular matrix. Moreover, HU protein can be internalized in a host cell after bacterial infection. Its role in the host cell is not well described and further studies are extremely needed. Existing results suggest the involvement of HU protein in host cell immune response modulation in bacterial favor, which can help pathogens resist host defense mechanisms. A better understanding of the HU protein's role in the host cell will help to effective treatment development.
Zobrazit více v PubMed
Agapova Y. K., Talyzina A. A., Altukhov D. A., Lavrentiev A. L., Timofeev V. I., Rakitina T. V. (2019). Virtual screening targeting dimerization signals of two Mycoplasma HU proteins revealed different types of inhibitors interacting with common binding determinants. Crystallogr. Rep. 64 (4), 602–607. doi: 10.1134/S1063774519030027 DOI
Agapova Y. K., Altukhov D. A., Timofeev V. I., Stroylov V. S., Mityanov V. S., Korzhenevskiy D. A., et al. . (2020. a). Structure-based inhibitors targeting the alpha-helical domain of the Spiroplasma melliferum histone-like HU protein. Sci. Rep. 10 (1), 15128. doi: 10.1038/s41598-020-72113-4 PubMed DOI PMC
Agapova Y. K., Altukhov D. A., Kamashev D. E., Timofeev V. I., Smirnova E. V., Rakitina T. V. (2020. b). Inhibitor targeting the interface between monomers of HU protein from Spiroplasma melliferum disrupts conformational dynamics and DNA-binding properties of the protein. Crystallogr. Rep. 65 (6), 903–908. doi: 10.1134/S1063774520060048 DOI
Aoki K., Matsumoto S., Hirayama Y., Wada T., Ozeki Y., Niki M., et al. . (2004). Extracellular mycobacterial DNA-binding protein 1 participates in mycobacterium-lung epithelial cell interaction through hyaluronic acid*. J. Biol. Chem. 279 (38), 39798–39806. doi: 10.1074/jbc.M402677200 PubMed DOI
Bahloul A., Boubrik F., Rouviere-Yaniv J. (2001). Roles of Escherichia coli histone-like protein HU in DNA replication:HU-beta suppresses the thermosensitivity of dnaA46ts. Biochimie 83 (2), 219–229. doi: 10.1016/S0300-9084(01)01246-9 PubMed DOI
Beckmann J. F., Markowski T. W., Witthuhn B. A., Fallon A. M. (2013). Detection of the Wolbachia-encoded DNA binding protein, HU beta, in mosquito gonads. Insect Biochem. Mol. Biol. 43 (3), 272–279. doi: 10.1016/j.ibmb.2012.12.007 PubMed DOI PMC
Bhowmick T., Ghosh S., Dixit K., Ganesan V., Ramagopal U. A., Dey D., et al. . (2014). Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors. Nat. Commun. 5, 4124. doi: 10.1038/ncomms5124 PubMed DOI
Brockson M. E., Novotny L. A., Mokrzan E. M., Malhotra S., Jurcisek J. A., Akbar R., et al. . (2014). Evaluation of the kinetics and mechanism of action of anti-integration host factor-mediated disruption of bacterial biofilms. Mol. Microbiol. 93 (6), 1246–1258. doi: 10.1111/mmi.12735 PubMed DOI PMC
Broyles S. S., Pettijohn D. E. (1986). Interaction of the Escherichia coli HU protein with DNA. evidence for formation of nucleosome-like structures with altered DNA helical pitch. J. Mol. Biol. 187 (1), 47–60. doi: 10.1016/0022-2836(86)90405-5 PubMed DOI
Choi S. H., Stinson M. W. (1991). Binding of a Streptococcus mutans cationic protein to kidney in vitro . Infection Immun. 59 (2), 537–543. doi: 10.1128/iai.59.2.537-543.1991 PubMed DOI PMC
Cui Y., Oh Y. J., Lim J., Youn M., Lee I., Pak H. K., et al. . (2012). AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against gram-positive and gram-negative bacteria. Food Microbiol. 29 (1), 80–87. doi: 10.1016/j.fm.2011.08.019 PubMed DOI
Devaraj A., Justice S. S., Bakaletz L. O., Goodman S. D. (2015). DNABII proteins play a central role in UPEC biofilm structure. Mol. Microbiol. 96 (6), 1119–1135. doi: 10.1111/mmi.12994 PubMed DOI PMC
Dey D., Nagaraja V., Ramakumar S. (2017). Structural and evolutionary analyses reveal determinants of DNA binding specificities of nucleoid-associated proteins HU and IHF. Mol. Phylogenet. Evol. 107, 356–366. doi: 10.1016/j.ympev.2016.11.014 PubMed DOI
Dey D., Ramakumar S. (2020). Phylogenetic studies and inhibitor design targeting protein interacting interface of nucleoid-associated protein HU. bioRxiv. doi: 10.1101/2020.06.18.135426 DOI
Dillon S. C., Dorman C. J. (2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8 (3), 185–195. doi: 10.1038/nrmicro2261 PubMed DOI
Ferrándiz M.-J., Carreño D., Ayora S., de la Campa A. G. (2018). HU of Streptococcus pneumoniae is essential for the preservation of DNA supercoiling. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.00493 PubMed DOI PMC
Freire M., Devaraj A., Young A., Navarro J., Downey J., Chen C., et al. . (2017). A bacterial biofilm induced oral osteolytic infection can be successfully treated by immuno-targeting an extracellular nucleoid associated protein. Mol. Oral. Microbiol. 32 (1), 74–88. doi: 10.1111/omi.12155 PubMed DOI PMC
Gunn J. S., Bakaletz L. O., Wozniak D. J. (2016). What’s on the outside matters: The role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J. Biol. Chem. 291 (24), 12538–12546. doi: 10.1074/jbc.R115.707547 PubMed DOI PMC
Gustave J. E., Jurcisek J. A., McCoy K. S., Goodman S. D., Bakaletz L. O. (2013). Targeting bacterial integration host factor to disrupt biofilms associated with cystic fibrosis. J. Cystic Fibrosis 12 (4), 384–389. doi: 10.1016/j.jcf.2012.10.011 PubMed DOI PMC
Jeon J., Kim J. H., Lee C. K., Oh C. H., Song H. J. (2014). The antimicrobial activity of (-)-Epigallocatehin-3-Gallate and green tea extracts against Pseudomonas aeruginosa and Escherichia coli isolated from skin wounds. Ann. Dermatol. 26 (5), 564–569. doi: 10.5021/ad.2014.26.5.564 PubMed DOI PMC
Jurcisek J. A., Brockman K. L., Novotny L. A., Goodman S. D., Bakaletz L. O. (2017). Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc. Natl. Acad. Sci. 114 (32), E6632–E6641. doi: 10.1073/pnas.1705508114 PubMed DOI PMC
Kim N., Weeks D. L., Shin J. M., Scott D. R., Young M. K., Sachs G., et al. . (2002). Proteins released by Helicobacter pylori in vitro . J. Bacteriol 184 (22), 6155–6162. doi: 10.1128/JB.184.22.6155-6162.2002 PubMed DOI PMC
Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofroňová O., Benada O., et al. . (2019). Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.02304 PubMed DOI PMC
Konecna K., Hernychova L., Reichelova M., Lenco J., Klimentova J., Stulik J., et al. . (2010). Comparative proteomic profiling of culture filtrate proteins of less and highly virulent Francisella tularensis strains. Proteomics 10 (24), 4501–4511. doi: 10.1002/pmic.201000248 PubMed DOI
Lee S., Razqan G. S. A., Kwon D. H. (2017). Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Phytomed: Int. J. Phytother Phytopharmacol 24, 49–55. doi: 10.1016/j.phymed.2016.11.007 PubMed DOI
Lei B., Mackie S., Lukomski S., Musser J. M. (2000). Identification and immunogenicity of group a Streptococcus culture supernatant proteins. Infection Immun. 68 (12), 6807–6818. doi: 10.1128/IAI.68.12.6807-6818.2000 PubMed DOI PMC
Liu D., Yumoto H., Hirota K., Murakami K., Takahashi K., Hirao K., et al. . (2008). Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways. Cell. Microbiol. 10 (1), 262–276. doi: 10.1111/j.1462-5822.2007.01040.x PubMed DOI
Liu R., Sun Y., Chai Y., Li S., Li S., Wang L., et al. . (2020). The structural basis of African swine fever virus pA104R binding to DNA and its inhibition by stilbene derivatives. Proc. Natl. Acad. Sci. U.S.A. 117 (20), 11000–11009. doi: 10.1073/pnas.1922523117 PubMed DOI PMC
Mabe K., Yamada M., Oguni I., Takahashi T. (1999). In vitro and In vivo activities of tea catechins against Helicobacter pylori. Antimicrob Agents Chemother 43 (7), 1788–1791. doi: 10.1128/AAC.43.7.1788 PubMed DOI PMC
Mangan M. W., Lucchini S., Croinin T., Fitzgerald S., Hinton J. C. D., Dorman C. J., et al. . (2011). Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology 157 (4), 1075–1087. doi: 10.1099/mic.0.046359-0 PubMed DOI
Martínez E., Campos-Gómez J., Barre F.-X. (2016). CTXϕ: Exploring new alternatives in host factor-mediated filamentous phage replications. Bacteriophage 6 (2), e1128512. doi: 10.1080/21597081.2015.1128512 PubMed DOI PMC
Martínez E., Paly E., Barre F.-X. (2015). CTXφ replication depends on the histone-like HU protein and the UvrD helicase. PloS Genet. 11 (5), e1005256. doi: 10.1371/journal.pgen.1005256 PubMed DOI PMC
Nakayama M., Shimatani K., Ozawa T., Shigemune N., Tomiyama D., Yui K., et al. . (2015). Mechanism for the antibacterial action of epigallocatechin gallate (EGCG) on bacillus subtilis. Bioscience Biotechnol Biochem. 79 (5), 845–854. doi: 10.1080/09168451.2014.993356 PubMed DOI
Novotny L. A., Amer A. O., Brockson M. E., Goodman S. D., Bakaletz L. O. (2013). Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PloS One 8 (6), e67629. doi: 10.1371/journal.pone.0067629 PubMed DOI PMC
Novotny L. A., Jurcisek J. A., Goodman S. D., Bakaletz L. O. (2016). Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo . EBioMedicine 10, 33–44. doi: 10.1016/j.ebiom.2016.06.022 PubMed DOI PMC
Novotny L. A., Goodman S. D., Bakaletz L. O. (2019). Redirecting the immune response towards immunoprotective domains of a DNABII protein resolves experimental otitis media. NPJ Vaccines 4 (1), 1–12. doi: 10.1038/s41541-019-0137-1 PubMed DOI PMC
Oberto J., Nabti S., Jooste V., Mignot H., Rouviere-Yaniv J. (2009). The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PloS One 4 (2), e4367. doi: 10.1371/journal.pone.0004367 PubMed DOI PMC
Oliveira Paiva A. M., Friggen A. H., Qin L., Douwes R., Dame R. T., Smits W. K. (2019). The bacterial chromatin protein HupA can remodel DNA and associates with the nucleoid in Clostridium difficile. J. Mol. Biol. 431 (4), 653–672. doi: 10.1016/j.jmb.2019.01.001 PubMed DOI
Paino A., Lohermaa E., Sormunen R., Tuominen H., Korhonen J., Pöllänen M. T., et al. . (2012). Interleukin-1β is internalised by viable Aggregatibacter actinomycetemcomitans biofilm and locates to the outer edges of nucleoids. Cytokine 60 (2), 565–574. doi: 10.1016/j.cyto.2012.07.024 PubMed DOI
Parvez A. K., Md., Saha K., Rahman J., Md., Munmun R. A., Rahman A., Dey S. K., et al. . (2019). Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon 5 (7), e02126. doi: 10.1016/j.heliyon.2019.e02126 PubMed DOI PMC
Pettijohn D. E. (1988). Histone-like proteins and bacterial chromosome structure. J. Biol. Chem. 263 (26), 12793–6. doi: 10.1016/S0021-9258(18)37625-7 PubMed DOI
Preobrajenskaya O., Boullard A., Boubrik F., Schnarr M., Rouvière-Yaniv J. (1994). The protein HU can displace the LexA repressor from its DNA-binding sites. Mol. Microbiol. 13 (3), 459–467. doi: 10.1111/j.1365-2958.1994.tb00440.x PubMed DOI
Priyadarshini R., Cugini C., Arndt A., Chen T., Tjokro N. O., Goodman S. D., et al. . (2013). The nucleoid-associated protein HUβ affects global gene expression in Porphyromonas gingivalis. Microbiology 159 (Pt 2), 219–229. doi: 10.1099/mic.0.061002-0 PubMed DOI PMC
Raj R., Agarwal N., Raghavan S., Chakraborti T., Poluri K. M., Pande G., et al. . (2021). Epigallocatechin gallate with potent anti-Helicobacter pylori activity binds efficiently to its histone-like DNA binding protein. ACS Omega 6 (5), 3548–3570. doi: 10.1021/acsomega.0c04763 PubMed DOI PMC
Rancès E., Voronin D., Tran-Van V., Mavingui P. (2008). Genetic and functional characterization of the type IV secretion system in Wolbachia. J. Bacteriol 190 (14), 5020–5030. doi: 10.1128/JB.00377-08 PubMed DOI PMC
Rocco C. J., Davey M. E., Bakaletz L. O., Goodman S.D. (2017). Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics. Mol. Oral. Microbiol. 32 (2), 118–130. doi: 10.1111/omi.12157 PubMed DOI PMC
Rouvière-Yaniv J., Yaniv M., Germond J.-E. (1979). E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA. Cell 17 (2), 265–274. doi: 10.1016/0092-8674(79)90152-1 PubMed DOI
Roy S., Dimitriadis E. K., Kar S., Geanacopoulos M., Lewis M. S., Adhya S. (2005). Gal repressor-operator-HU ternary complex: pathway of repressosome formation. Biochemistry 44 (14), 5373–5380. doi: 10.1021/bi047720t PubMed DOI
Severin A., Nickbarg E., Wooters J., Quazi S. A., Matsuka Y. V., Murphy E., et al. . (2007). Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins. J. Bacteriol 189 (5), 1514–1522. doi: 10.1128/JB.01132-06 PubMed DOI PMC
Stinson M. W., McLaughlin R., Choi S. H., Juarez Z. E., Barnard J. (1998). Streptococcal histone-like protein: Primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells. Infection Immun. 66 (1), 259–265. doi: 10.1128/IAI.66.1.259-265.1998 PubMed DOI PMC
Stojkova P., Spidlova P., Lenco J., Rehulkova H., Kratka L., Stulik J. (2018). HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence 9 (1), 754–770. doi: 10.1080/21505594.2018.1441588 PubMed DOI PMC
Stojkova P., Spidlova P., Stulik J. (2019). Nucleoid-associated protein HU: A Lilliputian in gene regulation of bacterial virulence. Front. Cell. Infection Microbiol. 9. doi: 10.3389/fcimb.2019.00159 PubMed DOI PMC
Swinger K. K., Rice P. A. (2007). Structure-based analysis of HU–DNA binding. J. Mol. Biol. 365 (4), 1005–1016. doi: 10.1016/j.jmb.2006.10.024 PubMed DOI PMC
Talyzina A. A., Agapova Y. K., Podshivalov D. D., Timofeev V. I., Sidorov-Biryukov D. D., Rakitina T. V., et al. . (2017). Application of virtual screening and molecular dynamics for the analysis of selectivity of inhibitors of HU proteins targeted to the DNA-recognition site. Crystallogr. Rep. 62 (6), 903–908. doi: 10.1134/S1063774517060244 DOI
Taylor P. W., Hamilton-Miller J. M. T., Stapleton P. D. (2005). Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull. 2, 71–81. doi: 10.1616/1476-2137.14184 PubMed DOI PMC
Thakur B., Arora K., Gupta A., Guptasarma P. (2021). The DNA-binding protein HU is a molecular glue that attaches bacteria to extracellular DNA in biofilms. J. Biol. Chem. 296, 100532. doi: 10.1016/j.jbc.2021.100532 PubMed DOI PMC
Turnbull L., Toyofuku M., Hynen A. L., Kurosawa M., Pessi G., Petty N. K., et al. . (2016). Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 7, 11220. doi: 10.1038/ncomms11220 PubMed DOI PMC
Winters B. D., Ramasubbu N., Stinson M. W. (1993). Isolation and characterization of a streptococcus pyogenes protein that binds to basal laminae of human cardiac muscle. Infection Immun. 61 (8), 3259–3264. doi: 10.1128/iai.61.8.3259-3264.1993 PubMed DOI PMC
Yan L., et al. . (2022). Diverse aquatic animal matrices play a key role in survival and potential virulence of non-O1/O139 Vibrio cholerae isolates Front. Microbiol. 13, 896767 doi: 10.3389/fmicb.2022.896767. PubMed DOI PMC
Yumoto H., Hirota K., Hirao K., Ninomiya M., Murakami K., Fujii H., et al. . (2019). The pathogenic factors from oral streptococci for systemic diseases. Int. J. Mol. Sci. 20 (18), 4571. doi: 10.3390/ijms20184571 PubMed DOI PMC
Zhang L., Ignatowski T. A., Spengler R. N., Noble B., Stinson M. W. (1999). Streptococcal histone induces murine macrophages to produce interleukin-1 and tumor necrosis factor alpha. Infection Immun. 67 (12), 6473–6477. doi: 10.1128/IAI.67.12.6473-6477.1999 PubMed DOI PMC
Zhang P., Zhao X., Wang Y., Du K., Wang Z., Yu J., et al. . (2022). Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins. Proc. Natl. Acad. Sci. 119 (9), e2116278119. doi: 10.1073/pnas.2116278119 PubMed DOI PMC
Breaking the cellular defense: the role of autophagy evasion in Francisella virulence