Additive Manufacturing of Honeycomb Lattice Structure-From Theoretical Models to Polymer and Metal Products
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35269069
PubMed Central
PMC8912043
DOI
10.3390/ma15051838
PII: ma15051838
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, analytical modeling, laser powder bed fusion, lattice structures, numerical simulation, titanium alloys,
- Publikační typ
- časopisecké články MeSH
The study aims to compare mechanical properties of polymer and metal honeycomb lattice structures between a computational model and an experiment. Specimens with regular honeycomb lattice structures made of Stratasys Vero PureWhite polymer were produced using PolyJet technology while identical specimens from stainless steel 316L and titanium alloy Ti6Al4V were produced by laser powder bed fusion. These structures were tested in tension at quasi-static rates of strain, and their effective Young's modulus was determined. Analytical models and finite element models were used to predict effective Young's modulus of the honeycomb structure from the properties of bulk materials. It was shown, that the stiffness of metal honeycomb lattice structure produced by laser powder bed fusion could be predicted with high accuracy by the finite element model. Analytical models slightly overestimate global stiffness but may be used as the first approximation. However, in the case of polymer material, both analytical and FEM modeling significantly overestimate material stiffness. The results indicate that computer modeling could be used with high accuracy to predict the mechanical properties of lattice structures produced from metal powder by laser melting.
Zobrazit více v PubMed
Bhuvanesh Kumar M., Sathiya P. Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges. Thin-Walled Struct. 2021;159:107228. doi: 10.1016/j.tws.2020.107228. DOI
Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D. Evaluation of Compressive Properties of SLM-fabricated Multi-Layer Lattice Structures by Experimental Test and μ-CT-based Finite Element Analysis. Mater. Des. 2019;169:107685. doi: 10.1016/j.matdes.2019.107685. DOI
Mertova K., Džugan J., Roudnická M., Daniel M., Vojtěch D., Seifi M., Lewandowski J. Build Size and Orientation Influence on Mechanical Properties of Powder Bed Fusion Deposited Titanium Parts. Met.-Open Access Metall. J. 2020;10:1340. doi: 10.3390/met10101340. DOI
Nazir A., Abate K.M., Kumar A., Jeng J.Y. A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures. Int. J. Adv. Manuf. Technol. 2019;104:3489–3510. doi: 10.1007/s00170-019-04085-3. DOI
Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M. SLM Lattice Structures: Properties, Performance, Applications and Challenges. Mater. Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137. DOI
Brennan M., Keist J.S., Palmer T.A. Additive Manufacturing Processes. Volume 24 ASM International; Novelty, OH, USA: 2020. Defects in Metal Additive Manufacturing Processes.
Zeng C., Liu L., Bian W., Leng J., Liu Y. Compression Behavior and Energy Absorption of 3D Printed Continuous Fiber Reinforced Composite Honeycomb Structures with Shape Memory Effects. Addit. Manuf. 2021;38:101842. doi: 10.1016/j.addma.2021.101842. DOI
Antolak-Dudka A., Płatek P., Durejko T., Baranowski P., Małachowski J., Sarzyński M., Czujko T. Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology. Materials. 2019;12:1225. doi: 10.3390/ma12081225. PubMed DOI PMC
Mansour M.T., Tsongas K., Tzetzis D. 3D Printed Hierarchical Honeycombs with Carbon Fiber and Carbon Nanotube Reinforced Acrylonitrile Butadiene Styrene. J. Compos. Sci. 2021;5:62. doi: 10.3390/jcs5020062. DOI
Lu C., Zhao M., Jie L., Wang J., Gao Y., Cui X., Chen P. Stress Distribution on Composite Honeycomb Sandwich Structure Suffered from Bending Load. Procedia Eng. 2015;99:405–412. doi: 10.1016/j.proeng.2014.12.554. DOI
Jiang D., Zhang D., Fei Q., Wu S. An Approach on Identification of Equivalent Properties of Honeycomb Core Using Experimental Modal Data. Finite Elem. Anal. Des. 2014;90:84–92. doi: 10.1016/j.finel.2014.06.006. DOI
Khosravani M.R., Berto F., Ayatollahi M.R., Reinicke T. Fracture Behavior of Additively Manufactured Components: A Review. Theor. Appl. Fract. Mech. 2020;109:102763. doi: 10.1016/j.tafmec.2020.102763. DOI
Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press; Cambridge, UK: 1997. (Cambridge Solid State Science Series). DOI
Malek S., Gibson L. Effective Elastic Properties of Periodic Hexagonal Honeycombs. Mech. Mater. 2015;91:226–240. doi: 10.1016/j.mechmat.2015.07.008. DOI
Alwattar T.A., Mian A. Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis and Neural Networks Approaches. J. Compos. Sci. 2019;3:33. doi: 10.3390/jcs3020033. DOI
Dzugan J., Sibr M., Konopík P., Procházka R., Rund M. Mechanical Properties Determination of AM Components. IOP Conf. Ser. Mater. Sci. Eng. 2017;179:012019. doi: 10.1088/1757-899X/179/1/012019. DOI
Matušú M., Blaha D., David P., Padovec Z., Růžička P., Řezníček J., Růžička M. The Effects of the Printing Direction and UV Artificial Degradation on the Mechanical Properties Using AM PolyJet Technology. ACM. 2021;15:31–44. doi: 10.24132/acm.2021.649. DOI
Huang W.C., Chuang C.S., Lin C.C., Wu C.H., Lin D.Y., Liu S.H., Tseng W.P., Horng J.B. Microstructure-Controllable Laser Additive Manufacturing Process for Metal Products. Phys. Procedia. 2014;56:58–63. doi: 10.1016/j.phpro.2014.08.096. DOI
Chen Y., Qian F., Zuo L., Scarpa F., Wang L. Broadband and Multiband Vibration Mitigation in Lattice Metamaterials with Sinusoidally-Shaped Ligaments. Extrem. Mech. Lett. 2017;17:24–32. doi: 10.1016/j.eml.2017.09.012. DOI
Senniangiri N., Girimurugan R., Vairavel M., Boopathiraja C., Gnanaprakash A., Gokulakannan S. Exploring the mechanical properties of the polyjet printed verowhite specimens. J. Crit. Rev. 2020;7:10.
Bartsch K., Herzog D., Bossen B., Emmelmann C. Material Modeling of Ti–6Al–4V Alloy Processed by Laser Powder Bed Fusion for Application in Macro-Scale Process Simulation. Mater. Sci. Eng. A. 2021;814:141237. doi: 10.1016/j.msea.2021.141237. DOI
Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2020;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC
Seabold S., Perktold J. Statsmodels: Econometric and Statistical Modeling with Python; Proceedings of the Python in Science Conference; Austin, TX, USA. 28 June–3 July 2010; pp. 92–96. DOI
Gibson L.J. Ph.D. Thesis. University of Cambridge; Cambridge, UK: 1981. The Elastic and Plastic Behaviour of Cellular Materials. DOI
Tee Y.L., Peng C., Pille P., Leary M., Tran P. PolyJet 3D Printing of Composite Materials: Experimental and Modelling Approach. JOM. 2020;72:1105–1117. doi: 10.1007/s11837-020-04014-w. DOI
Cuan-Urquizo E., Barocio E., Tejada-Ortigoza V., Pipes R.B., Rodriguez C.A., Roman-Flores A. Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches. Materials. 2019;12:895. doi: 10.3390/ma12060895. PubMed DOI PMC
Palanisamy C., Raman R., kumar Dhanraj P. Additive Manufacturing: A Review on Mechanical Properties of Polyjet and FDM Printed Parts. Polym. Bull. 2021:1–52. doi: 10.1007/s00289-021-03899-0. DOI
Birosz M.T., Andó M., Jeganmohan S. Finite Element Method Modeling of Additive Manufactured Compressor Wheel. J. Inst. Eng. India Ser. D. 2021;102:79–85. doi: 10.1007/s40033-021-00251-8. DOI
Choren J.A., Heinrich S.M., Silver-Thorn M.B. Young’s Modulus and Volume Porosity Relationships for Additive Manufacturing Applications. J. Mater. Sci. 2013;48:5103–5112. doi: 10.1007/s10853-013-7237-5. DOI
Abusabir A., Khan M.A., Asif M., Khan K.A. Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures. Polymers. 2022;14:618. doi: 10.3390/polym14030618. PubMed DOI PMC
Pehlivan E., Roudnicka M., Dzugan J., Koukolikova M., Králík V., Seifi M., Lewandowski J.J., Dalibor D., Daniel M. Effects of Build Orientation and Sample Geometry on the Mechanical Response of Miniature CP-Ti Grade 2 Strut Samples Manufactured by Laser Powder Bed Fusion. Addit. Manuf. 2020;35:101403. doi: 10.1016/j.addma.2020.101403. DOI
Nafis B.M., Whitt R., Iradukunda A.C., Huitink D. Additive Manufacturing for Enhancing Thermal Dissipation in Heat Sink Implementation: A Review. Heat Transf. Eng. 2021;42:967–984. doi: 10.1080/01457632.2020.1766246. DOI