Additive Manufacturing of Honeycomb Lattice Structure-From Theoretical Models to Polymer and Metal Products

. 2022 Mar 01 ; 15 (5) : . [epub] 20220301

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35269069

The study aims to compare mechanical properties of polymer and metal honeycomb lattice structures between a computational model and an experiment. Specimens with regular honeycomb lattice structures made of Stratasys Vero PureWhite polymer were produced using PolyJet technology while identical specimens from stainless steel 316L and titanium alloy Ti6Al4V were produced by laser powder bed fusion. These structures were tested in tension at quasi-static rates of strain, and their effective Young's modulus was determined. Analytical models and finite element models were used to predict effective Young's modulus of the honeycomb structure from the properties of bulk materials. It was shown, that the stiffness of metal honeycomb lattice structure produced by laser powder bed fusion could be predicted with high accuracy by the finite element model. Analytical models slightly overestimate global stiffness but may be used as the first approximation. However, in the case of polymer material, both analytical and FEM modeling significantly overestimate material stiffness. The results indicate that computer modeling could be used with high accuracy to predict the mechanical properties of lattice structures produced from metal powder by laser melting.

Zobrazit více v PubMed

Bhuvanesh Kumar M., Sathiya P. Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges. Thin-Walled Struct. 2021;159:107228. doi: 10.1016/j.tws.2020.107228. DOI

Lei H., Li C., Meng J., Zhou H., Liu Y., Zhang X., Wang P., Fang D. Evaluation of Compressive Properties of SLM-fabricated Multi-Layer Lattice Structures by Experimental Test and μ-CT-based Finite Element Analysis. Mater. Des. 2019;169:107685. doi: 10.1016/j.matdes.2019.107685. DOI

Mertova K., Džugan J., Roudnická M., Daniel M., Vojtěch D., Seifi M., Lewandowski J. Build Size and Orientation Influence on Mechanical Properties of Powder Bed Fusion Deposited Titanium Parts. Met.-Open Access Metall. J. 2020;10:1340. doi: 10.3390/met10101340. DOI

Nazir A., Abate K.M., Kumar A., Jeng J.Y. A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures. Int. J. Adv. Manuf. Technol. 2019;104:3489–3510. doi: 10.1007/s00170-019-04085-3. DOI

Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M. SLM Lattice Structures: Properties, Performance, Applications and Challenges. Mater. Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137. DOI

Brennan M., Keist J.S., Palmer T.A. Additive Manufacturing Processes. Volume 24 ASM International; Novelty, OH, USA: 2020. Defects in Metal Additive Manufacturing Processes.

Zeng C., Liu L., Bian W., Leng J., Liu Y. Compression Behavior and Energy Absorption of 3D Printed Continuous Fiber Reinforced Composite Honeycomb Structures with Shape Memory Effects. Addit. Manuf. 2021;38:101842. doi: 10.1016/j.addma.2021.101842. DOI

Antolak-Dudka A., Płatek P., Durejko T., Baranowski P., Małachowski J., Sarzyński M., Czujko T. Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology. Materials. 2019;12:1225. doi: 10.3390/ma12081225. PubMed DOI PMC

Mansour M.T., Tsongas K., Tzetzis D. 3D Printed Hierarchical Honeycombs with Carbon Fiber and Carbon Nanotube Reinforced Acrylonitrile Butadiene Styrene. J. Compos. Sci. 2021;5:62. doi: 10.3390/jcs5020062. DOI

Lu C., Zhao M., Jie L., Wang J., Gao Y., Cui X., Chen P. Stress Distribution on Composite Honeycomb Sandwich Structure Suffered from Bending Load. Procedia Eng. 2015;99:405–412. doi: 10.1016/j.proeng.2014.12.554. DOI

Jiang D., Zhang D., Fei Q., Wu S. An Approach on Identification of Equivalent Properties of Honeycomb Core Using Experimental Modal Data. Finite Elem. Anal. Des. 2014;90:84–92. doi: 10.1016/j.finel.2014.06.006. DOI

Khosravani M.R., Berto F., Ayatollahi M.R., Reinicke T. Fracture Behavior of Additively Manufactured Components: A Review. Theor. Appl. Fract. Mech. 2020;109:102763. doi: 10.1016/j.tafmec.2020.102763. DOI

Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press; Cambridge, UK: 1997. (Cambridge Solid State Science Series). DOI

Malek S., Gibson L. Effective Elastic Properties of Periodic Hexagonal Honeycombs. Mech. Mater. 2015;91:226–240. doi: 10.1016/j.mechmat.2015.07.008. DOI

Alwattar T.A., Mian A. Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis and Neural Networks Approaches. J. Compos. Sci. 2019;3:33. doi: 10.3390/jcs3020033. DOI

Dzugan J., Sibr M., Konopík P., Procházka R., Rund M. Mechanical Properties Determination of AM Components. IOP Conf. Ser. Mater. Sci. Eng. 2017;179:012019. doi: 10.1088/1757-899X/179/1/012019. DOI

Matušú M., Blaha D., David P., Padovec Z., Růžička P., Řezníček J., Růžička M. The Effects of the Printing Direction and UV Artificial Degradation on the Mechanical Properties Using AM PolyJet Technology. ACM. 2021;15:31–44. doi: 10.24132/acm.2021.649. DOI

Huang W.C., Chuang C.S., Lin C.C., Wu C.H., Lin D.Y., Liu S.H., Tseng W.P., Horng J.B. Microstructure-Controllable Laser Additive Manufacturing Process for Metal Products. Phys. Procedia. 2014;56:58–63. doi: 10.1016/j.phpro.2014.08.096. DOI

Chen Y., Qian F., Zuo L., Scarpa F., Wang L. Broadband and Multiband Vibration Mitigation in Lattice Metamaterials with Sinusoidally-Shaped Ligaments. Extrem. Mech. Lett. 2017;17:24–32. doi: 10.1016/j.eml.2017.09.012. DOI

Senniangiri N., Girimurugan R., Vairavel M., Boopathiraja C., Gnanaprakash A., Gokulakannan S. Exploring the mechanical properties of the polyjet printed verowhite specimens. J. Crit. Rev. 2020;7:10.

Bartsch K., Herzog D., Bossen B., Emmelmann C. Material Modeling of Ti–6Al–4V Alloy Processed by Laser Powder Bed Fusion for Application in Macro-Scale Process Simulation. Mater. Sci. Eng. A. 2021;814:141237. doi: 10.1016/j.msea.2021.141237. DOI

Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2020;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC

Seabold S., Perktold J. Statsmodels: Econometric and Statistical Modeling with Python; Proceedings of the Python in Science Conference; Austin, TX, USA. 28 June–3 July 2010; pp. 92–96. DOI

Gibson L.J. Ph.D. Thesis. University of Cambridge; Cambridge, UK: 1981. The Elastic and Plastic Behaviour of Cellular Materials. DOI

Tee Y.L., Peng C., Pille P., Leary M., Tran P. PolyJet 3D Printing of Composite Materials: Experimental and Modelling Approach. JOM. 2020;72:1105–1117. doi: 10.1007/s11837-020-04014-w. DOI

Cuan-Urquizo E., Barocio E., Tejada-Ortigoza V., Pipes R.B., Rodriguez C.A., Roman-Flores A. Characterization of the Mechanical Properties of FFF Structures and Materials: A Review on the Experimental, Computational and Theoretical Approaches. Materials. 2019;12:895. doi: 10.3390/ma12060895. PubMed DOI PMC

Palanisamy C., Raman R., kumar Dhanraj P. Additive Manufacturing: A Review on Mechanical Properties of Polyjet and FDM Printed Parts. Polym. Bull. 2021:1–52. doi: 10.1007/s00289-021-03899-0. DOI

Birosz M.T., Andó M., Jeganmohan S. Finite Element Method Modeling of Additive Manufactured Compressor Wheel. J. Inst. Eng. India Ser. D. 2021;102:79–85. doi: 10.1007/s40033-021-00251-8. DOI

Choren J.A., Heinrich S.M., Silver-Thorn M.B. Young’s Modulus and Volume Porosity Relationships for Additive Manufacturing Applications. J. Mater. Sci. 2013;48:5103–5112. doi: 10.1007/s10853-013-7237-5. DOI

Abusabir A., Khan M.A., Asif M., Khan K.A. Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures. Polymers. 2022;14:618. doi: 10.3390/polym14030618. PubMed DOI PMC

Pehlivan E., Roudnicka M., Dzugan J., Koukolikova M., Králík V., Seifi M., Lewandowski J.J., Dalibor D., Daniel M. Effects of Build Orientation and Sample Geometry on the Mechanical Response of Miniature CP-Ti Grade 2 Strut Samples Manufactured by Laser Powder Bed Fusion. Addit. Manuf. 2020;35:101403. doi: 10.1016/j.addma.2020.101403. DOI

Nafis B.M., Whitt R., Iradukunda A.C., Huitink D. Additive Manufacturing for Enhancing Thermal Dissipation in Heat Sink Implementation: A Review. Heat Transf. Eng. 2021;42:967–984. doi: 10.1080/01457632.2020.1766246. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...