Unique Gene Expression Signatures in the Intestinal Mucosa and Organoids Derived from Germ-Free and Monoassociated Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-06326S
Grantová Agentura České Republiky
LM2015062
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1419
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.2.16/3.1.00/21547
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 68378050
Akademie Věd České Republiky
PubMed
30934845
PubMed Central
PMC6480644
DOI
10.3390/ijms20071581
PII: ijms20071581
Knihovny.cz E-zdroje
- Klíčová slova
- Enricher tool, Onecut2, expression profiling, microbiota, monoassociation,
- MeSH
- biologické markery metabolismus MeSH
- Escherichia coli fyziologie MeSH
- gnotobiologické modely genetika MeSH
- imunitní systém metabolismus MeSH
- kolon metabolismus MeSH
- mikrobiota MeSH
- myši inbrední BALB C MeSH
- organoidy metabolismus MeSH
- regulace genové exprese MeSH
- slizniční imunita MeSH
- stanovení celkové genové exprese * MeSH
- střevní sliznice metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two E. coli strains. The results were compared to the expression data obtained in conventionally reared (CR) mice. In addition, we analyzed gene expression in colon organoids derived from CR, GF, and monoassociated animals. The analysis revealed that the complete absence of intestinal microbiota mainly affected the mucosal immune system, which was not restored upon monoassociation. The most important expression changes observed in the colon mucosa indicated alterations in adipose tissue and lipid metabolism. In the comparison of differentially expressed genes in the mucosa or organoids obtained from GF and CR mice, only six genes were common for both types of samples. The results show that the increased expression of the angiopoietin-like 4 (Angptl4) gene encoding a secreted regulator of lipid metabolism indicates the GF status.
Zobrazit více v PubMed
Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009. PubMed DOI
Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi: 10.1126/science.1223490. PubMed DOI PMC
Yamamoto M., Yamaguchi R., Munakata K., Takashima K., Nishiyama M., Hioki K., Ohnishi Y., Nagasaki M., Imoto S., Miyano S., et al. A microarray analysis of gnotobiotic mice indicating that microbial exposure during the neonatal period plays an essential role in immune system development. BMC Genom. 2012;13:335. doi: 10.1186/1471-2164-13-335. PubMed DOI PMC
El Aidy S., van Baarlen P., Derrien M., Lindenbergh-Kortleve D.J., Hooiveld G., Levenez F., Dore J., Dekker J., Samsom J.N., Nieuwenhuis E.E., et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567–579. doi: 10.1038/mi.2012.32. PubMed DOI
Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267. doi: 10.1126/science.1223813. PubMed DOI
Khachatryan Z.A., Ktsoyan Z.A., Manukyan G.P., Kelly D., Ghazaryan K.A., Aminov R.I. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE. 2008;3:e3064. doi: 10.1371/journal.pone.0003064. PubMed DOI PMC
Sudo N., Sawamura S., Tanaka K., Aiba Y., Kubo C., Koga Y. The requirement of intestinal bacterial flora for the development of an ige production system fully susceptible to oral tolerance induction. J. Immunol. 1997;159:1739–1745. PubMed
Tlaskalova-Hogenova H., Stepankova R., Kozakova H., Hudcovic T., Vannucci L., Tuckova L., Rossmann P., Hrncir T., Kverka M., Zakostelska Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Vieira S.M., Pagovich O.E., Kriegel M.A. Diet, microbiota and autoimmune diseases. Lupus. 2014;23:518–526. doi: 10.1177/0961203313501401. PubMed DOI PMC
Marchesi J.R., Dutilh B.E., Hall N., Peters W.H., Roelofs R., Boleij A., Tjalsma H. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6:e20447. doi: 10.1371/journal.pone.0020447. PubMed DOI PMC
Sobhani I., Tap J., Roudot-Thoraval F., Roperch J.P., Letulle S., Langella P., Corthier G., Tran Van Nhieu J., Furet J.P. Microbial dysbiosis in colorectal cancer (crc) patients. PLoS ONE. 2011;6:e16393. doi: 10.1371/journal.pone.0016393. PubMed DOI PMC
Schulz M.D., Atay C., Heringer J., Romrig F.K., Schwitalla S., Aydin B., Ziegler P.K., Varga J., Reindl W., Pommerenke C., et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514:508–512. doi: 10.1038/nature13398. PubMed DOI PMC
Morgan X.C., Tickle T.L., Sokol H., Gevers D., Devaney K.L., Ward D.V., Reyes J.A., Shah S.A., LeLeiko N., Snapper S.B., et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79. doi: 10.1186/gb-2012-13-9-r79. PubMed DOI PMC
Rubin D.C., Shaker A., Levin M.S. Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Front. Immunol. 2012;3:107. doi: 10.3389/fimmu.2012.00107. PubMed DOI PMC
Larsson E., Tremaroli V., Lee Y.S., Koren O., Nookaew I., Fricker A., Nielsen J., Ley R.E., Backhed F. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through myd88. Gut. 2012;61:1124–1131. doi: 10.1136/gutjnl-2011-301104. PubMed DOI PMC
El Aidy S., Van den Abbeele P., Van de Wiele T., Louis P., Kleerebezem M. Intestinal colonization: How key microbial players become established in this dynamic process: Microbial metabolic activities and the interplay between the host and microbes. Bioessays. 2013;35:913–923. doi: 10.1002/bies.201300073. PubMed DOI
Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291:881–884. doi: 10.1126/science.291.5505.881. PubMed DOI
Gaboriau-Routhiau V., Rakotobe S., Lecuyer E., Mulder I., Lan A., Bridonneau C., Rochet V., Pisi A., De Paepe M., Brandi G., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper t cell responses. Immunity. 2009;31:677–689. doi: 10.1016/j.immuni.2009.08.020. PubMed DOI
Dahlgren U.I., Wold A.E., Hanson L.A., Midtvedt T. Expression of a dietary protein in e. Coli renders it strongly antigenic to gut lymphoid tissue. Immunology. 1991;73:394–397. PubMed PMC
Kruis W., Fric P., Pokrotnieks J., Lukas M., Fixa B., Kascak M., Kamm M.A., Weismueller J., Beglinger C., Stolte M., et al. Maintaining remission of ulcerative colitis with the probiotic escherichia coli nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53:1617–1623. doi: 10.1136/gut.2003.037747. PubMed DOI PMC
Hudcovic T., Kozakova H., Kolinska J., Stepankova R., Hrncir T., Tlaskalova-Hogenova H. Monocolonization with bacteroides ovatus protects immunodeficient scid mice from mortality in chronic intestinal inflammation caused by long-lasting dextran sodium sulfate treatment. Physiol. Res. 2009;58:101–110. PubMed
Torras N., Garcia-Diaz M., Fernandez-Majada V., Martinez E. Mimicking epithelial tissues in three-dimensional cell culture models. Front. Bioeng. Biotechnol. 2018;6:197. doi: 10.3389/fbioe.2018.00197. PubMed DOI PMC
Sato T., Vries R.G., Snippert H.J., van de Wetering M., Barker N., Stange D.E., van Es J.H., Abo A., Kujala P., Peters P.J., et al. Single lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–265. doi: 10.1038/nature07935. PubMed DOI
Sato T., van Es J.H., Snippert H.J., Stange D.E., Vries R.G., van den Born M., Barker N., Shroyer N.F., van de Wetering M., Clevers H. Paneth cells constitute the niche for lgr5 stem cells in intestinal crypts. Nature. 2010;469:415–418. doi: 10.1038/nature09637. PubMed DOI PMC
Sato T., Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: Mechanism and applications. Science. 2013;340:1190–1194. doi: 10.1126/science.1234852. PubMed DOI
Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., Clark N.R., Ma’ayan A. Enrichr: Interactive and collaborative html5 gene list enrichment analysis tool. BMC Bioinform. 2013;14:128. doi: 10.1186/1471-2105-14-128. PubMed DOI PMC
Sommer F., Backhed F. The gut microbiota--masters of host development and physiology. Nat. Rev. Microbiol. 2013;11:227–238. doi: 10.1038/nrmicro2974. PubMed DOI
El Aidy S., Dinan T.G., Cryan J.F. Gut microbiota: The conductor in the orchestra of immune-neuroendocrine communication. Clin. Ther. 2015;37:954–967. doi: 10.1016/j.clinthera.2015.03.002. PubMed DOI
Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816. PubMed DOI
Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., Van Immerseel F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010;23:366–384. doi: 10.1017/S0954422410000247. PubMed DOI
Wentworth C.C., Alam A., Jones R.M., Nusrat A., Neish A.S. Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3. J. Biol. Chem. 2011;286:38448–38455. doi: 10.1074/jbc.M111.268938. PubMed DOI PMC
D’Agostino D., Lowe M.E. Pancreatic lipase-related protein 2 is the major colipase-dependent pancreatic lipase in suckling mice. J. Nutr. 2004;134:132–134. doi: 10.1093/jn/134.1.132. PubMed DOI PMC
Backhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101. PubMed DOI PMC
Fijneman R.J., Peham J.R., van de Wiel M.A., Meijer G.A., Matise I., Velcich A., Cormier R.T. Expression of pla2g2a prevents carcinogenesis in muc2-deficient mice. Cancer Sci. 2008;99:2113–2119. doi: 10.1111/j.1349-7006.2008.00924.x. PubMed DOI PMC
Arantes R.M., Nogueira A.M. Increased intracellular content of enteroglucagon in proximal colon is related to intestinal adaptation to germ-free status. Cell Tissue Res. 2001;303:447–450. doi: 10.1007/s004410000323. PubMed DOI
Nogueira A.M., Barbosa A.J. Immunocytochemical study of intestinal endocrine cells in germ-free mice. Eur. J. Histochem. 1994;38:213–218. PubMed
Kadomatsu T., Tabata M., Oike Y. Angiopoietin-like proteins: Emerging targets for treatment of obesity and related metabolic diseases. FEBS J. 2011;278:559–564. doi: 10.1111/j.1742-4658.2010.07979.x. PubMed DOI
Koster A., Chao Y.B., Mosior M., Ford A., Gonzalez-DeWhitt P.A., Hale J.E., Li D., Qiu Y., Fraser C.C., Yang D.D., et al. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: Regulation of triglyceride metabolism. Endocrinology. 2005;146:4943–4950. doi: 10.1210/en.2005-0476. PubMed DOI
Mandard S., Zandbergen F., van Straten E., Wahli W., Kuipers F., Muller M., Kersten S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 2006;281:934–944. doi: 10.1074/jbc.M506519200. PubMed DOI
Backhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA. 2007;104:979–984. doi: 10.1073/pnas.0605374104. PubMed DOI PMC
Crawford P.A., Gordon J.I. Microbial regulation of intestinal radiosensitivity. Proc. Natl. Acad. Sci. USA. 2005;102:13254–13259. doi: 10.1073/pnas.0504830102. PubMed DOI PMC
Cazes A., Galaup A., Chomel C., Bignon M., Brechot N., Le Jan S., Weber H., Corvol P., Muller L., Germain S., et al. Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ. Res. 2006;99:1207–1215. doi: 10.1161/01.RES.0000250758.63358.91. PubMed DOI PMC
Aronsson L., Huang Y., Parini P., Korach-Andre M., Hakansson J., Gustafsson J.A., Pettersson S., Arulampalam V., Rafter J. Decreased fat storage by lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (angptl4) PLoS ONE. 2010;5:e13087. doi: 10.1371/journal.pone.0013087. PubMed DOI PMC
Duszka K., Ellero-Simatos S., Ow G.S., Defernez M., Paramalingam E., Tett A., Ying S., Konig J., Narbad A., Kuznetsov V.A., et al. Complementary intestinal mucosa and microbiota responses to caloric restriction. Sci. Rep. 2018;8:11338. doi: 10.1038/s41598-018-29815-7. PubMed DOI PMC
Shulzhenko N., Morgun A., Hsiao W., Battle M., Yao M., Gavrilova O., Orandle M., Mayer L., Macpherson A.J., McCoy K.D., et al. Crosstalk between b lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 2011;17:1585–1593. doi: 10.1038/nm.2505. PubMed DOI PMC
Forman R.A., deSchoolmeester M.L., Hurst R.J., Wright S.H., Pemberton A.D., Else K.J. The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post trichuris muris infection. PLoS ONE. 2012;7:e42248. doi: 10.1371/journal.pone.0042248. PubMed DOI PMC
Takahashi S., Suzuki J., Kohno M., Oida K., Tamai T., Miyabo S., Yamamoto T., Nakai T. Enhancement of the binding of triglyceride-rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein e and lipoprotein lipase. J. Biol. Chem. 1995;270:15747–15754. doi: 10.1074/jbc.270.26.15747. PubMed DOI
Essers M.A., Offner S., Blanco-Bose W.E., Waibler Z., Kalinke U., Duchosal M.A., Trumpp A. Ifnalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–908. doi: 10.1038/nature07815. PubMed DOI
Deharvengt S.J., Tse D., Sideleva O., McGarry C., Gunn J.R., Longnecker D.S., Carriere C., Stan R.V. Pv1 down-regulation via shrna inhibits the growth of pancreatic adenocarcinoma xenografts. J. Cell. Mol. Med. 2012;16:2690–2700. doi: 10.1111/j.1582-4934.2012.01587.x. PubMed DOI PMC
Lamsoul I., Metais A., Gouot E., Heuze M.L., Lennon-Dumenil A.M., Moog-Lutz C., Lutz P.G. Asb2alpha regulates migration of immature dendritic cells. Blood. 2013;122:533–541. doi: 10.1182/blood-2012-11-466649. PubMed DOI
Schaefer L., Babelova A., Kiss E., Hausser H.J., Baliova M., Krzyzankova M., Marsche G., Young M.F., Mihalik D., Gotte M., et al. The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J. Clin. Investig. 2005;115:2223–2233. doi: 10.1172/JCI23755. PubMed DOI PMC
Franke A., Balschun T., Karlsen T.H., Hedderich J., May S., Lu T., Schuldt D., Nikolaus S., Rosenstiel P., Krawczak M., et al. Replication of signals from recent studies of crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat. Genet. 2008;40:713–715. doi: 10.1038/ng.148. PubMed DOI
Yamazaki K., Takahashi A., Takazoe M., Kubo M., Onouchi Y., Fujino A., Kamatani N., Nakamura Y., Hata A. Positive association of genetic variants in the upstream region of nkx2-3 with crohn’s disease in japanese patients. Gut. 2009;58:228–232. doi: 10.1136/gut.2007.140764. PubMed DOI
Krausova M., Korinek V. Signal transduction pathways participating in homeostasis and malignant transformation of the intestinal tissue. Neoplasma. 2012;59:708–718. doi: 10.4149/neo_2012_090. PubMed DOI
Si-Tahar M., Merlin D., Sitaraman S., Madara J.L. Constitutive and regulated secretion of secretory leukocyte proteinase inhibitor by human intestinal epithelial cells. Gastroenterology. 2000;118:1061–1071. doi: 10.1016/S0016-5085(00)70359-3. PubMed DOI
Taggart C.C., Cryan S.A., Weldon S., Gibbons A., Greene C.M., Kelly E., Low T.B., O’Neill S.J., McElvaney N.G. Secretory leucoprotease inhibitor binds to nf-kappab binding sites in monocytes and inhibits p65 binding. J. Exp. Med. 2005;202:1659–1668. doi: 10.1084/jem.20050768. PubMed DOI PMC
Schmid M., Fellermann K., Fritz P., Wiedow O., Stange E.F., Wehkamp J. Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in crohn’s disease. J. Leukoc. Biol. 2007;81:907–915. doi: 10.1189/jlb.0906581. PubMed DOI
Baughman G., Wiederrecht G.J., Campbell N.F., Martin M.M., Bourgeois S. Fkbp51, a novel t-cell-specific immunophilin capable of calcineurin inhibition. Mol. Cell. Biol. 1995;15:4395–4402. doi: 10.1128/MCB.15.8.4395. PubMed DOI PMC
Baughman G., Wiederrecht G.J., Chang F., Martin M.M., Bourgeois S. Tissue distribution and abundance of human fkbp51, and fk506-binding protein that can mediate calcineurin inhibition. Biochem. Biophys. Res. Commun. 1997;232:437–443. doi: 10.1006/bbrc.1997.6307. PubMed DOI
Mulder I.E., Schmidt B., Stokes C.R., Lewis M., Bailey M., Aminov R.I., Prosser J.I., Gill B.P., Pluske J.R., Mayer C.D., et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 2009;7:79. doi: 10.1186/1741-7007-7-79. PubMed DOI PMC
Feng J., Zhang X., Zhu H., Wang X., Ni S., Huang J. Foxq1 overexpression influences poor prognosis in non-small cell lung cancer, associates with the phenomenon of emt. PLoS ONE. 2012;7:e39937. doi: 10.1371/journal.pone.0039937. PubMed DOI PMC
Qiao Y., Jiang X., Lee S.T., Karuturi R.K., Hooi S.C., Yu Q. Foxq1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res. 2011;71:3076–3086. doi: 10.1158/0008-5472.CAN-10-2787. PubMed DOI
Yu W., Hegarty J.P., Berg A., Chen X., West G., Kelly A.A., Wang Y., Poritz L.S., Koltun W.A., Lin Z. Nkx2-3 transcriptional regulation of endothelin-1 and vegf signaling in human intestinal microvascular endothelial cells. PLoS ONE. 2011;6:e20454. doi: 10.1371/journal.pone.0020454. PubMed DOI PMC
Yu W., Lin Z., Hegarty J.P., John G., Chen X., Faber P.W., Kelly A.A., Wang Y., Poritz L.S., Schreiber S., et al. Genes regulated by nkx2-3 in sirna-mediated knockdown b cells: Implication of endothelin-1 in inflammatory bowel disease. Mol. Genet. Metab. 2010;100:88–95. doi: 10.1016/j.ymgme.2010.02.001. PubMed DOI
Schroder N., Sekhar A., Geffers I., Muller J., Dittrich-Breiholz O., Kracht M., Wedemeyer J., Gossler A. Identification of mouse genes with highly specific expression patterns in differentiated intestinal epithelium. Gastroenterology. 2006;130:902–907. doi: 10.1053/j.gastro.2005.12.025. PubMed DOI
Heiskala K., Andersson L.C. Reg iv is differently expressed in enteroendocrine cells of human small intestine and colon. Regul. Pept. 2013;183:27–34. doi: 10.1016/j.regpep.2013.03.007. PubMed DOI
Rafa L., Dessein A.F., Devisme L., Buob D., Truant S., Porchet N., Huet G., Buisine M.P., Lesuffleur T. Reg4 acts as a mitogenic, motility and pro-invasive factor for colon cancer cells. Int. J. Oncol. 2010;36:689–698. PubMed
Rakoff-Nahoum S., Kong Y., Kleinstein S.H., Subramanian S., Ahern P.P., Gordon J.I., Medzhitov R. Analysis of gene-environment interactions in postnatal development of the mammalian intestine. Proc. Natl. Acad. Sci. USA. 2015;112:1929–1936. doi: 10.1073/pnas.1424886112. PubMed DOI PMC
Ginestier C., Hur M.H., Charafe-Jauffret E., Monville F., Dutcher J., Brown M., Jacquemier J., Viens P., Kleer C.G., Liu S., et al. Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–567. doi: 10.1016/j.stem.2007.08.014. PubMed DOI PMC
Li T., Su Y., Mei Y., Leng Q., Leng B., Liu Z., Stass S.A., Jiang F. Aldh1a1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab. Investig. 2010;90:234–244. doi: 10.1038/labinvest.2009.127. PubMed DOI PMC
Ma S., Chan K.W., Lee T.K., Tang K.H., Wo J.Y., Zheng B.J., Guan X.Y. Aldehyde dehydrogenase discriminates the cd133 liver cancer stem cell populations. Mol. Cancer Res. 2008;6:1146–1153. doi: 10.1158/1541-7786.MCR-08-0035. PubMed DOI
Cote C.D., Zadeh-Tahmasebi M., Rasmussen B.A., Duca F.A., Lam T.K. Hormonal signaling in the gut. J. Biol. Chem. 2014;289:11642–11649. doi: 10.1074/jbc.O114.556068. PubMed DOI PMC
Aiken K.D., Kisslinger J.A., Roth K.A. Immunohistochemical studies indicate multiple enteroendocrine cell differentiation pathways in the mouse proximal small intestine. Dev. Dyn. 1994;201:63–70. doi: 10.1002/aja.1002010107. PubMed DOI
Harvey R.F., Read A.E. Effect of cholecystokinin on colonic motility and symptoms in patients with the irritable-bowel syndrome. Lancet. 1973;1:1–3. doi: 10.1016/S0140-6736(73)91219-1. PubMed DOI
Hudcovic T., Stepankova R., Kozakova H., Hrncir T., Tlaskalova-Hogenova H. Effects of monocolonization with escherichia coli strains o6k13 and nissle 1917 on the development of experimentally induced acute and chronic intestinal inflammation in germ-free immunocompetent and immunodeficient mice. Folia Microbiol. (Praha) 2007;52:618–626. doi: 10.1007/BF02932191. PubMed DOI
Jacobi C.A., Malfertheiner P. Escherichia coli nissle 1917 (mutaflor): New insights into an old probiotic bacterium. Dig. Dis. 2011;29:600–607. doi: 10.1159/000333307. PubMed DOI
Behnsen J., Deriu E., Sassone-Corsi M., Raffatellu M. Probiotics: Properties, examples, and specific applications. Cold Spring Harb. Perspect. Med. 2013;3:a010074. doi: 10.1101/cshperspect.a010074. PubMed DOI PMC
Barker N., van Es J.H., Kuipers J., Kujala P., van den Born M., Cozijnsen M., Haegebarth A., Korving J., Begthel H., Peters P.J., et al. Identification of stem cells in small intestine and colon by marker gene lgr5. Nature. 2007;449:1003–1007. doi: 10.1038/nature06196. PubMed DOI
van der Flier L.G., van Gijn M.E., Hatzis P., Kujala P., Haegebarth A., Stange D.E., Begthel H., van den Born M., Guryev V., Oving I., et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009;136:903–912. doi: 10.1016/j.cell.2009.01.031. PubMed DOI
Schuijers J., Junker J.P., Mokry M., Hatzis P., Koo B.K., Sasselli V., van der Flier L.G., Cuppen E., van Oudenaarden A., Clevers H. Ascl2 acts as an r-spondin/wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell. 2015;16:158–170. doi: 10.1016/j.stem.2014.12.006. PubMed DOI
Kengaku M., Capdevila J., Rodriguez-Esteban C., De La Pena J., Johnson R.L., Belmonte J.C.I., Tabin C.J. Distinct wnt pathways regulating aer formation and dorsoventral polarity in the chick limb bud. Science. 1998;280:1274–1277. doi: 10.1126/science.280.5367.1274. PubMed DOI
Le Grand F., Jones A.E., Seale V., Scime A., Rudnicki M.A. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009;4:535–547. doi: 10.1016/j.stem.2009.03.013. PubMed DOI PMC
Zheng D., Decker K.F., Zhou T., Chen J., Qi Z., Jacobs K., Weilbaecher K.N., Corey E., Long F., Jia L. Role of wnt7b-induced noncanonical pathway in advanced prostate cancer. Mol. Cancer Res. 2013;11:482–493. doi: 10.1158/1541-7786.MCR-12-0520. PubMed DOI PMC
Jacquemin P., Pierreux C.E., Fierens S., van Eyll J.M., Lemaigre F.P., Rousseau G.G. Cloning and embryonic expression pattern of the mouse onecut transcription factor oc-2. Gene Expr. Patterns. 2003;3:639–644. doi: 10.1016/S1567-133X(03)00110-8. PubMed DOI
Sapkota D., Chintala H., Wu F., Fliesler S.J., Hu Z., Mu X. Onecut1 and onecut2 redundantly regulate early retinal cell fates during development. Proc. Natl. Acad. Sci. USA. 2014;111:E4086–E4095. doi: 10.1073/pnas.1405354111. PubMed DOI PMC
Klimova L., Antosova B., Kuzelova A., Strnad H., Kozmik Z. Onecut1 and onecut2 transcription factors operate downstream of pax6 to regulate horizontal cell development. Dev. Biol. 2015;402:48–60. doi: 10.1016/j.ydbio.2015.02.023. PubMed DOI
Vanhorenbeeck V., Jenny M., Cornut J.F., Gradwohl G., Lemaigre F.P., Rousseau G.G., Jacquemin P. Role of the onecut transcription factors in pancreas morphogenesis and in pancreatic and enteric endocrine differentiation. Dev. Biol. 2007;305:685–694. doi: 10.1016/j.ydbio.2007.02.027. PubMed DOI
Tsai Y.H., Nattiv R., Dedhia P.H., Nagy M.S., Chin A.M., Thomson M., Klein O.D., Spence J.R. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045–1055. doi: 10.1242/dev.138453. PubMed DOI PMC
Maier E.A., Dusing M.R., Wiginton D.A. Temporal regulation of enhancer function in intestinal epithelium: A role for onecut factors. J. Biol. Chem. 2006;281:32263–32271. doi: 10.1074/jbc.M606699200. PubMed DOI
Dusing M.R., Maier E.A., Aronow B.J., Wiginton D.A. Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol. Genom. 2010;42:115–125. doi: 10.1152/physiolgenomics.00017.2010. PubMed DOI PMC
Carvalho B.S., Irizarry R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26:2363–2367. doi: 10.1093/bioinformatics/btq431. PubMed DOI PMC
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Huber W., Carey V.J., Gentleman R., Anders S., Carlson M., Carvalho B.S., Bravo H.C., Davis S., Gatto L., Girke T., et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat. Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC
Team R.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: [(accessed on 30 June 2016)]. Available online: https://www.R-project.org.
Storey J.D., Tibshirani R. Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol. Biol. 2003;224:149–157. PubMed
Athar A., Fullgrabe A., George N., Iqbal H., Huerta L., Ali A., Snow C., Fonseca N.A., Petryszak R., Papatheodorou I., et al. Arrayexpress update—From bulk to single-cell expression data. Nucleic Acids Res. 2019;47:D711–D715. doi: 10.1093/nar/gky964. PubMed DOI PMC
Hrckulak D., Janeckova L., Lanikova L., Kriz V., Horazna M., Babosova O., Vojtechova M., Galuskova K., Sloncova E., Korinek V. Wnt effector tcf4 is dispensable for wnt signaling in human cancer cells. Genes (Basel) 2018;9:439. doi: 10.3390/genes9090439. PubMed DOI PMC